

Quantum-Geometric Duality: The Complete Axiomatic Framework

Paper III of the Quantum-Geometric Duality Series

Marc Sperzel*

*Independent Researcher
MSci Physics, King's College London*

January 24, 2026

Abstract

We present a complete axiomatic framework for Quantum-Geometric Duality, the hypothesis that quantum mechanics and general relativity are complementary descriptions of a single underlying reality. The framework rests on four primitive axioms: Information Conservation, Entanglement-Geometry Correspondence, the Entropic Action Principle, and Scale-Dependent Unification. Two additional statements complete the structure: an observer-dependent horizon principle adopted as a postulate, and a holographic information bound derivable from the primitives together with the generalized second law. We show that matter superpositions produce entangled matter-geometry states in the semiclassical regime. From the axioms we derive testable predictions including modified Einstein equations with entropy corrections, the generalized uncertainty principle, a minimum measurable length of order the Planck scale, modified dispersion relations with characteristic E^2 scaling, and vacuum birefringence with E^3 scaling observable through gamma-ray burst polarimetry. The framework provides a unified foundation for gravitational decoherence and holographic dark energy, connecting quantum-gravitational phenomena across sixty orders of magnitude in scale.

1 Introduction

The reconciliation of quantum mechanics and general relativity remains the central open problem in theoretical physics. Despite nearly a century of effort, no complete theory of quantum gravity has emerged that is both mathematically consistent and empirically verified. String theory, loop quantum gravity, and asymptotic safety each offer partial insights, yet none has produced unambiguous experimental predictions accessible to current technology. The difficulty is not merely technical; it reflects a conceptual tension between the foundational principles of the two theories. Quantum mechanics describes nature in terms of state vectors evolving unitarily in a fixed background spacetime, while general relativity treats spacetime itself as a dynamical entity shaped by matter and energy. Any attempt at unification must address this asymmetry.

*ORCID: 0009-0000-6252-3155. Email: me@marcsperzel.com

In recent years, developments in black hole physics and holography have suggested a possible resolution. The Bekenstein-Hawking entropy formula [5, 6], the Ryu-Takayanagi prescription [7], and the ER=EPR conjecture [8] all point toward a deep connection between quantum entanglement and the geometry of spacetime. These results, emerging from the study of black holes and the AdS/CFT correspondence, suggest that entanglement may not merely correlate distant quantum systems but may actually constitute the fabric of spacetime itself. If this perspective is correct, then quantum mechanics and general relativity are not competing descriptions requiring reconciliation, but complementary projections of a single underlying reality—much as wave and particle descriptions complement one another in ordinary quantum mechanics.

The present paper develops this perspective into a complete axiomatic framework, which we call Quantum-Geometric Duality. The framework is built upon four primitive axioms: Information Conservation, which asserts that total quantum information is preserved across all physical processes; Entanglement-Geometry Correspondence, which identifies quantum entanglement with geometric area; the Entropic Action Principle, which governs the dynamics of coupled matter-geometry systems; and Scale-Dependent Unification, which describes how quantum and geometric descriptions interpolate as a function of scale. Two additional results complete the structure: an Observer-Dependent Horizon Principle relating quantum and gravitational uncertainties, and a Holographic Information Bound derivable from the primitive axioms together with the generalized second law of thermodynamics.

This paper is the third in a series developing the Quantum-Geometric Duality framework. Paper I [25] applies the Entanglement-Geometry Correspondence to derive the gravitational decoherence rate $\tau_{\text{dec}} = \hbar d/(GM^2)$, showing how spatial superpositions of massive objects decohere through entanglement with the gravitational field. Paper II [26] applies Information Conservation and the Holographic Bound to cosmology, deriving a holographic dark energy density $\rho_{\text{DE}} = \alpha c^2 H^2/G$ with $\alpha \approx 0.082$ consistent with observations. The present paper provides the complete axiomatic foundation underlying both results, develops Axioms III–V in detail, and derives additional predictions including the generalized uncertainty principle, minimum measurable length, modified dispersion relations, and vacuum birefringence.

The structure of the paper is as follows. Section 2 presents the complete axiom system, discussing the physical motivation and interpretation of each axiom and clarifying the logical relationships among them. Section 3 develops the entropic dynamics arising from Axiom III, deriving modified Einstein equations with entropy corrections and explaining the thermodynamic origin of local temperature. Section 4 explores the consequences of scale-dependent unification, including the existence of a minimum measurable length and modified dispersion relations. Section 5 addresses observer-dependent horizons, deriving the generalized uncertainty principle and predicting vacuum birefringence from non-commutative spacetime structure. Section 6 summarizes the testable predictions of the framework and establishes falsification criteria. Section 7 relates the present work to Papers I and II, demonstrating how the framework unifies quantum-gravitational effects across sixty orders of magnitude in scale. Section 8 discusses limitations, connections to alternative approaches, and prospects for experimental tests.

Three appendices provide technical details. Appendix A establishes the logical independence of the axioms through explicit countermodels. Appendix B develops the mathematical framework for semiclassical matter-geometry coupling. Appendix C proves the existence and uniqueness of self-consistent solutions in the weak-field regime.

Series context. This paper presents the complete axiomatic structure underlying the companion papers: Paper A (gravitational decoherence), Paper B (holographic dark energy), and Paper H (information-theoretic bounds). Each paper is self-contained; this paper provides the unifying framework.

2 The Axiom Structure

Any attempt to unify quantum mechanics and general relativity must begin with a clear statement of foundational principles. The history of physics demonstrates that axiomatization reveals the conceptual core of a theory. Maxwell’s equations, once axiomatized, made the existence of electromagnetic waves manifest; Einstein’s postulates for special relativity exposed the conventional nature of simultaneity. We adopt an axiomatic approach because the tension between quantum mechanics and general relativity is fundamentally conceptual, and conceptual tensions are best addressed by making foundational assumptions explicit.

The framework we develop requires four primitive axioms, which cannot be derived from more basic principles within the theory. Two additional statements complete the structure: an observer-dependent horizon principle that we adopt as a postulate, and a holographic bound that can be derived from the primitive axioms together with the generalized second law of thermodynamics. We also formulate a Semiclassical Duality Correspondence describing how matter superpositions couple to geometry, and a Gravitational Information Axiom governing the rate of information transfer. The logical relationships among these statements are clarified throughout this section, and their independence is established through countermodels in Appendix A.

2.1 Information Conservation

The first axiom addresses the fate of quantum information in gravitational processes. The black hole information paradox, first articulated by Hawking [11], demonstrated that semiclassical gravity appears to destroy information: a pure quantum state collapsing to form a black hole appears to emerge as thermal Hawking radiation, violating unitarity. Decades of work on the paradox—including the Page curve [13], quantum extremal surfaces [10], and island calculations [14]—have converged on the conclusion that information is preserved, though the mechanism requires physics beyond semiclassical gravity.

We elevate information conservation to an axiom, extending it beyond black holes to all gravitational processes. The key insight is that information can be stored not only in matter degrees of freedom but also in geometric degrees of freedom associated with horizons. We therefore postulate that the total information content of any closed system, accounting for both matter and geometry, remains constant.

Axiom 2.1 (Information Conservation). The total information content of any closed system is conserved:

$$S_{\text{total}} = S_{\text{vN}}(\rho) + S_{\text{EH}}(g) = \text{const} \quad (1)$$

where $S_{\text{vN}}(\rho) = -\text{Tr}(\rho \ln \rho)$ is the von Neumann entropy of the matter quantum state and $S_{\text{EH}}(g) = A(\mathcal{H})/(4\ell_P^2)$ is the Bekenstein-Hawking entropy associated with horizons in the geometry.

This axiom has immediate physical consequences. When matter degrees of freedom become inaccessible—as when matter falls behind a black hole horizon—information is not lost but transferred to geometric degrees of freedom. The sum $S_{\text{vN}} + S_{\text{EH}}$ remains constant even as its individual terms change. This provides a resolution to the information paradox within the framework: information is never destroyed, only redistributed between matter and geometry.

The axiom also constrains the dynamics of quantum-gravitational systems. Any process that increases the geometric entropy S_{EH} must correspondingly decrease the matter entropy S_{vN} , and vice versa. This coupling between matter and geometry, mediated by information conservation, underlies the gravitational decoherence derived in Paper I.

2.2 Entanglement-Geometry Correspondence

The second axiom formalizes the connection between quantum entanglement and spacetime geometry suggested by holographic results. The Ryu-Takayanagi formula [7] established that in AdS/CFT, the entanglement entropy of a boundary region equals the area of a minimal surface in the bulk, divided by $4\ell_P^2$. Subsequent developments extended this to quantum extremal surfaces [10] and to dynamical situations. The ER=EPR conjecture [8] went further, proposing that entanglement between quantum systems corresponds to wormhole connections in spacetime geometry.

These results, while derived in specific contexts, suggest a general principle: quantum entanglement and geometric area are two descriptions of the same physical quantity. We formalize this as our second axiom, generalizing beyond the AdS/CFT context to arbitrary semiclassical spacetimes.

Axiom 2.2 (Generalized Entanglement-Geometry Correspondence). For a system in the semiclassical gravitational regime, the generalized entropy associated with a codimension-two surface \mathcal{X} is given by:

$$S_{\text{gen}}(\mathcal{X}) = \frac{A(\mathcal{X})}{4\ell_P^2} + S_{\text{ext}}(\mathcal{X}) + \Delta S_{\text{corr}} \quad (2)$$

where $A(\mathcal{X})$ is the proper area of the surface, $S_{\text{ext}}(\mathcal{X})$ is the von Neumann entropy of quantum fields in the exterior region, and ΔS_{corr} encodes higher-order corrections.

The structure of this formula merits discussion. The first term, $A/(4\ell_P^2)$, represents the classical geometric contribution—the Bekenstein-Hawking entropy. The second term accounts for quantum field contributions outside the surface. The correction term ΔS_{corr} includes subleading effects that become important in strong-gravity regimes or at very small scales.

This axiom has a profound implication: the geometry of spacetime encodes the entanglement structure of quantum fields, and vice versa. A change in entanglement must be accompanied by a change in geometry. When a quantum system in superposition becomes entangled with its environment, the corresponding geometric degrees of freedom also change, leading to gravitational decoherence. Paper I derives the decoherence rate from this axiom, showing that spatial superpositions of massive objects decohere on a timescale $\tau_{\text{dec}} = \hbar d/(GM^2)$.

2.3 Entropic Action Principle

The third axiom governs the dynamics of coupled matter-geometry systems. Standard general relativity derives Einstein's equations from the Einstein-Hilbert action by varying with respect

to the metric. Quantum field theory derives matter dynamics from a matter action by varying with respect to field configurations. The challenge in quantum gravity is to formulate a unified action governing both.

Our approach incorporates entropy directly into the action principle, following insights from thermodynamic approaches to gravity [15]. The idea is that gravity, like thermodynamics, may emerge from more fundamental microscopic physics through entropic considerations. We include not only the usual matter Hamiltonian and gravitational curvature terms, but also an entropic contribution proportional to the von Neumann entropy.

Axiom 2.3 (Entropic Action Principle). In the semiclassical regime—where gravity is classical ($g_{\mu\nu}$ a c-number) and matter is quantum (ρ a density operator on the fixed background)—dynamics extremizes:

$$S[\rho, g] = \int d^4x \sqrt{-g} \left[\langle \hat{H}_{\text{matter}} \rangle_\rho + \frac{c^4 R}{16\pi G} - \frac{S_{\text{vN}}(\rho)}{\beta} \right] \quad (3)$$

where $\langle \hat{H}_{\text{matter}} \rangle_\rho = \text{Tr}(\rho \hat{H}_{\text{matter}})$, and the local inverse temperature $\beta(x)$ satisfies the Tolman-Ehrenfest relation $\beta \sqrt{g_{00}} = \text{const}$ along timelike curves.

The three terms in this action have clear physical interpretations. The first term is the expectation value of the matter Hamiltonian, representing matter energy. The second term is the Einstein-Hilbert curvature scalar, governing gravitational dynamics. The third term is the von Neumann entropy weighted by temperature, representing the tendency of systems to evolve toward maximum entropy.

Extremizing this action yields the field equations of the theory, as we develop in Section 3. Variation with respect to the metric produces modified Einstein equations with an entropic stress-energy correction. Variation with respect to the density matrix produces a thermal equilibrium condition. The Unruh temperature emerges naturally from the entanglement structure via the Bisognano-Wichmann theorem [32].

Remark 2.1 (Microfoundation: Entanglement Equilibrium). The Entropic Action Principle is not an independent postulate but emerges from a more fundamental principle: *entanglement equilibrium in causal diamonds*. Following Jacobson's thermodynamic derivation of Einstein's equations [16], consider a small causal diamond D with boundary area A and bulk entanglement entropy S_{bulk} . The first law of entanglement (Bisognano-Wichmann theorem) gives $\delta S_{\text{bulk}} = \delta \langle K \rangle$, where $K = 2\pi \int_{B_\ell} [(\ell^2 - r^2)/(2\ell)] T_{00} dV$ is the modular Hamiltonian. The Raychaudhuri equation applied to the null boundary gives $\delta A \propto -\ell^{d+1} G_{00}$. Demanding stationarity of generalized entropy,

$$\delta S_{\text{gen}} = \frac{\delta A}{4G\hbar} + \delta S_{\text{bulk}} = 0, \quad (4)$$

yields Einstein's equations $G_{\mu\nu} = 8\pi G T_{\mu\nu}$ without postulating an action—the geometric and matter prefactors cancel exactly.

The Entropic Action Principle represents the *effective coarse-grained description* of this microscopic equilibrium when integrated over all causal diamonds. Crucially, the parameter β is the *modular temperature* associated with the local causal diamond—not a global thermal bath. For accelerated observers, $\beta = 2\pi c/a$ gives the Unruh temperature; near black hole horizons, $\beta = 2\pi/\kappa$ gives the Hawking temperature; in flat space far from horizons, $\beta \rightarrow \infty$ (zero

temperature, pure state). This interpretation resolves the apparent tension between the Gibbs state result $\rho \propto e^{-\beta H}$ and the manifestly non-thermal state of the universe: the “thermality” is local and modular, not global.

2.4 Scale-Dependent Unification

The fourth axiom addresses the transition between quantum and classical descriptions. At microscopic scales, quantum mechanics provides the accurate description; at macroscopic scales, classical general relativity suffices. The axiom asserts that these descriptions are not in conflict but interpolate smoothly as a function of scale.

Axiom 2.4 (Scale-Dependent Unification). Physical observables interpolate smoothly between quantum and geometric descriptions via a scale-dependent weighting:

$$\boxed{\mathcal{O}_{\text{unified}}(x) = \rho_{\text{QM}}(x) \cdot f\left(\frac{r}{\ell_P}\right) + \rho_{\text{GR}}(x) \cdot \left[1 - f\left(\frac{r}{\ell_P}\right)\right]} \quad (5)$$

where $f(x) = 1/(1+x^2)$ is an interpolating function and $\ell_P = \sqrt{G\hbar/c^3}$ is the Planck length.

Remark 2.2 (Interpolation Function). The function $f(x) = 1/(1+x^2)$ is motivated by renormalization group flow. Consider a beta function of logistic form $\beta(g) = -g(1-g)$, which has UV fixed point $g=0$ and IR fixed point $g=1$. The RG trajectory connecting them has profile $g(\mu) = 1/(1 + (\mu/\mu_*)^2)$ where μ_* is the crossover scale. Identifying $\mu_* = 1/\ell_P$ gives the stated form. Alternative interpolation functions satisfying $f(0) = 1$, $f(\infty) = 0$, and smoothness would give qualitatively similar physics; we adopt this specific form for definiteness.

This axiom has several important consequences. It implies the existence of a minimum measurable length, since the quantum and geometric descriptions cannot be simultaneously arbitrarily precise. It also leads to modified dispersion relations for particles propagating through Planck-scale structured spacetime, as we derive in Section 4. These modifications, while small, may be detectable through observations of high-energy astrophysical sources.

2.5 Observer-Dependent Horizons

The fifth statement in our framework addresses the relationship between quantum and gravitational uncertainties. The Heisenberg uncertainty principle $\Delta E \cdot \Delta t \geq \hbar/2$ governs quantum measurements. The Unruh effect establishes that an accelerating observer perceives a thermal bath at temperature $T = \hbar a/(2\pi c k_B)$. We postulate that these two phenomena reflect a deeper equivalence between quantum and gravitational uncertainties.

Axiom 2.5 (Observer-Dependent Horizon Principle). Quantum and gravitational uncertainties are equivalent manifestations of the same underlying physics:

$$\boxed{\Delta E \cdot \Delta t \geq \frac{\hbar}{2} \iff a \cdot \Delta x \geq \frac{c^2}{2}} \quad (6)$$

where a is proper acceleration.

This equivalence connects the quantum uncertainty principle to gravitational effects. An accelerating observer has a Rindler horizon at distance c^2/a ; the gravitational uncertainty

$a \cdot \Delta x \geq c^2/2$ can be interpreted as a statement about the minimum distance from this horizon. The quantum uncertainty $\Delta E \cdot \Delta t \geq \hbar/2$ then becomes a statement about the energy fluctuations associated with this horizon.

Unlike the first four axioms, which we take as primitive, the observer-dependent horizon principle has the status of a postulate: it expresses a physical equivalence suggested by known results but not derivable from more basic principles within our framework. A deeper theory might derive this equivalence from more fundamental considerations. In Section 5, we derive the generalized uncertainty principle from this postulate, combining quantum and gravitational contributions to position-momentum uncertainty.

2.6 Holographic Information Bound (Derived)

The sixth statement in our framework is not an independent axiom but a theorem derivable from Axiom I (Information Conservation) together with the generalized second law of thermodynamics. The holographic principle, proposed by 't Hooft [17] and developed by Susskind [18] and Bousso [19], asserts that the maximum entropy in a region is bounded by the area of its boundary, not its volume.

Theorem 2.6 (Holographic Bound). *From Axiom I (Information Conservation) and the Generalized Second Law:*

$$S_{\max} \leq \frac{A}{4\ell_P^2} \quad (7)$$

Sketch. Axiom I states $S_{\text{total}} = S_{\text{vN}} + S_{\text{EH}}$ is conserved. The GSL requires $S_{\text{gen}} = S_{\text{matter}} + A/(4\ell_P^2)$ to increase. Combining these with the requirement that S_{matter} cannot exceed the horizon capacity yields the bound. \square

While this statement follows from earlier axioms via the generalized second law, we include it explicitly because of its central importance to the framework. The holographic bound fundamentally constrains the information content of spacetime regions and, when applied to cosmological horizons, yields the holographic dark energy derived in Paper II.

2.7 Semiclassical Duality Correspondence

Having established the axioms, we now formulate the central physical result of the framework: how matter superpositions couple to geometry in the semiclassical regime. The Entanglement-Geometry Correspondence (Axiom II) implies that changes in quantum state must be accompanied by changes in geometry. We make this precise through the Semiclassical Duality Correspondence.

Proposition 2.7 (Semiclassical Matter-Geometry Entanglement). *In the semiclassical regime, superpositions of matter states produce entangled matter-geometry states:*

$$|\Psi\rangle = \sum_n c_n |\psi_n\rangle \implies |\Psi_{\text{total}}\rangle = \sum_n c_n |\psi_n\rangle \otimes |\alpha^{(n)}\rangle \quad (8)$$

where $|\alpha^{(n)}\rangle$ are gravitational coherent states with expectation value $\langle \alpha^{(n)} | \hat{h}_{\mu\nu} | \alpha^{(n)} \rangle = h_{\mu\nu}^{(n)}$ satisfying the linearized Einstein equations sourced by $|\psi_n\rangle$.

This result captures the essence of Quantum-Geometric Duality. A matter state in superposition does not source a single classical geometry; instead, each branch of the superposition is correlated with its corresponding geometric perturbation. The total state is entangled: matter and geometry cannot be described independently. The mathematical framework underlying this correspondence, including the definition of gravitational coherent states and the semiclassical validity regime, is developed in Appendix B.

The entanglement between matter and geometry has measurable consequences. When an external observer traces over the geometric degrees of freedom (which are inaccessible to typical laboratory measurements), the matter state appears to undergo decoherence. This is the gravitational decoherence analyzed in Paper I.

2.8 Gravitational Information Axiom

Finally, we formulate a principle governing the rate at which information is transferred between matter and geometric degrees of freedom. The Diósi-Penrose formula for gravitational decoherence [23, 22] suggests that the gravitational self-energy $E_{\text{grav}} = GM^2/d$ sets the energy scale for decoherence. The question is how this energy scale relates to the decoherence rate.

The Margolus-Levitin bound from quantum information theory establishes that the maximum rate of quantum state evolution is $2E/(\pi\hbar)$, where E is the energy available to drive the evolution. We hypothesize that gravitational information transfer saturates this bound.

Principle 2.8 (Gravitational Information Axiom (GIA)). Gravitational information transfer between matter and geometric degrees of freedom saturates the Margolus-Levitin bound:

$$\boxed{\frac{dI_{S:G}}{dt} = \frac{2E_{\text{grav}}}{\pi\hbar}, \quad E_{\text{grav}} = \frac{GM^2}{d}} \quad (9)$$

This gives G^1 scaling for decoherence, rather than the perturbative G^2 scaling.

This principle is physically motivated by multiple considerations: saturation of the Margolus-Levitin bound, the Diósi-Penrose hypothesis, and consistency with the Entanglement-Geometry Correspondence. However, perturbative quantum field theory calculations generically give G^2 scaling for gravitational effects. The question of G^1 versus G^2 scaling is therefore an empirical one, to be settled by experiment. We discuss the status of this scaling in Section 8.

2.9 Axiomatic Structure Summary

Primitive Axioms (independent, cannot be derived):

Axiom	Content	Physical Basis
I	Information Conservation	Unitarity
II	Entanglement-Geometry Correspondence	Holography
III	Entropic Action Principle	Entanglement equilibrium
IV	Scale-Dependent Unification	RG flow

Postulates (additional assumptions, not derived from I-IV):

Postulate	Content	Status
V	Observer-Dependent Horizon Principle	Assumed
GIA	Gravitational Information Axiom	Hypothesis

Derived Results (theorems following from axioms):

Result	Content	Derived From
Theorem VI	Holographic Bound $S \leq A/(4\ell_P^2)$	Axiom I + GSL
Theorem SDC	Semiclassical Duality Correspondence	Axioms I + II

The primitive axioms are logically independent: each can be violated while the others hold, as we demonstrate through explicit countermodels in Appendix A. Together with the postulates, they provide a complete foundation for the Quantum-Geometric Duality framework.

Remark 2.3 (Minimal Formulation). A more economical formulation is possible. Axioms I and II can be combined into a single “Generalized Entropy Conservation” axiom stating that $S_{\text{gen}} = A/(4\ell_P^2) + S_{\text{ext}}$ is conserved. The Observer-Dependent Horizon Principle (V) can then be derived as a theorem rather than postulated independently. This minimal 3-axiom formulation achieves greater logical economy at the cost of some pedagogical clarity. We present the expanded structure here because it makes the physical content of each principle more transparent, but readers should be aware that the foundational content can be compressed further.

3 Entropic Dynamics

The Entropic Action Principle (Axiom III) provides a unified variational formulation for coupled matter-geometry systems. In this section, we extremize the action to derive the field equations of the theory. The procedure follows standard variational methods, but the inclusion of the entropic term leads to modifications of both the Einstein equations and the equilibrium condition for matter.

We begin with the entropic action as stated in Eq. (3). The action depends on two independent variables: the spacetime metric $g_{\mu\nu}$ and the matter density matrix ρ . Physical configurations correspond to extrema of this action, obtained by requiring that variations with respect to both variables vanish. We consider these variations in turn.

Varying the action with respect to the metric $g_{\mu\nu}$ yields the gravitational field equations. The variation of the Einstein-Hilbert term produces the Einstein tensor $G_{\mu\nu}$ through the standard calculation. The variation of the matter Hamiltonian term produces the expectation value of the stress-energy tensor. The entropic term contributes an additional piece proportional to the metric times the von Neumann entropy. Collecting these contributions and requiring $\delta S/\delta g_{\mu\nu} = 0$, we obtain the modified Einstein equations:

$$G_{\mu\nu} = \frac{8\pi G}{c^4} \left(\langle \hat{T}_{\mu\nu} \rangle + \frac{S_{\text{vN}}}{\beta} g_{\mu\nu} \right) \quad (10)$$

The first term on the right-hand side is the standard source term from matter: the expectation value of the stress-energy tensor in the quantum state ρ . The second term is an entropic correction: a contribution proportional to the von Neumann entropy $S_{\text{vN}} = -\text{Tr}(\rho \ln \rho)$ weighted by the inverse temperature $\beta^{-1} = k_B T$. This entropic stress-energy has the form of a perfect fluid with equation of state $p = -\rho_{\text{ent}}$, precisely the equation of state for a cosmological constant.

The physical interpretation of this result is significant. In thermal equilibrium, entropic effects contribute to the effective stress-energy sourcing gravity. At low temperatures (large β), the entropic contribution is suppressed. At high temperatures, it becomes increasingly

important. This provides a natural mechanism for entropy-driven gravitational effects in hot, dense environments such as the early universe.

We now turn to the matter equations. Varying the action with respect to the density matrix ρ and requiring $\delta S/\delta\rho = 0$ yields the equilibrium condition for matter:

$$\boxed{\rho = \frac{e^{-\beta \hat{H}[g]}}{Z[g]}} \quad (11)$$

where $Z[g] = \text{Tr}(e^{-\beta \hat{H}[g]})$ is the partition function and $\hat{H}[g]$ is the matter Hamiltonian in the background geometry $g_{\mu\nu}$. This is the Gibbs thermal state at temperature $T = 1/(k_B\beta)$. The matter system equilibrates to a thermal distribution determined by the local temperature and the Hamiltonian.

The coupled equations (10) and (11) must be solved self-consistently. The geometry $g_{\mu\nu}$ enters the matter Hamiltonian $\hat{H}[g]$, which determines the equilibrium state ρ . The state ρ then sources the geometry through the stress-energy tensor. Finding a solution requires iterating until convergence, as we discuss in Appendix C. In the weak-field regime, the self-consistency map is a contraction, guaranteeing existence and uniqueness of solutions.

A natural question arises: what determines the temperature β^{-1} appearing in the action? In ordinary thermodynamics, temperature is determined by the environment—a heat bath with which the system is in contact. In the present context, however, the system under consideration includes gravity, and there may be no external heat bath. The resolution comes from the Bisognano-Wichmann theorem [32], which establishes that the vacuum state of a quantum field theory, when restricted to a Rindler wedge (the region accessible to a uniformly accelerating observer), is a thermal state at the Unruh temperature.

The Unruh temperature is given by:

$$\boxed{T = \frac{\hbar a}{2\pi c k_B}} \quad (12)$$

where a is the proper acceleration. This remarkable result connects acceleration, temperature, and quantum mechanics: an accelerating observer perceives the quantum vacuum as a thermal bath. The temperature is determined not by an external environment but by the observer's acceleration and, more generally, by the entanglement structure of the quantum state across the observer's horizon.

Within the Quantum-Geometric Duality framework, the Unruh temperature is not merely an observed effect but a fundamental ingredient. The inverse temperature β in the entropic action is determined by the local acceleration through Eq. (12). In a general curved spacetime, the local temperature varies according to the Tolman relation, which ensures thermal equilibrium in the presence of gravitational redshift. The temperature appearing in Eq. (3) is thus not a free parameter but is fixed by the entanglement structure of the quantum fields and the geometry of spacetime.

This derivation of temperature from entanglement has profound implications. It suggests that thermodynamic properties of gravitating systems are not merely analogies but arise from the quantum information-theoretic structure of spacetime. Black hole thermodynamics, with its temperature determined by surface gravity, becomes a special case of this more general principle.

The entropic dynamics of Axiom III thus connects quantum information, thermodynamics, and gravity in a unified framework.

4 Scale-Dependent Unification

The Scale-Dependent Unification axiom (Axiom IV) asserts that quantum and geometric descriptions interpolate smoothly as a function of the length scale. This interpolation has concrete physical consequences: the existence of a minimum measurable length, and modified dispersion relations for particles propagating through Planck-scale structured spacetime. In this section, we derive these consequences and discuss their experimental signatures.

The fundamental insight underlying these results is that position and momentum measurements cannot simultaneously achieve arbitrary precision when gravitational effects are included. The standard Heisenberg uncertainty principle, $\Delta x \cdot \Delta p \geq \hbar/2$, constrains measurements of position and momentum but places no lower bound on position uncertainty alone—in principle, arbitrarily precise position measurements are possible if one accepts correspondingly large momentum uncertainty. Gravity changes this picture. Attempting to localize a particle to very small scales requires concentrating energy in a small region; at some point, the energy density becomes sufficient to form a black hole, and the position measurement becomes meaningless. This heuristic argument suggests that there exists a minimum length scale below which spatial localization is impossible.

To make this precise, we combine the quantum uncertainty principle with gravitational considerations. The generalized uncertainty principle (GUP) that emerges from this combination has the form:

$$\boxed{\Delta x \geq \frac{\hbar}{2\Delta p} + \frac{\beta G \Delta p}{2c^3}} \quad (13)$$

where β is a dimensionless parameter of order unity. The first term is the standard quantum contribution, dominant at low momenta. The second term is the gravitational contribution, dominant at high momenta. Together, they imply that position uncertainty cannot be made arbitrarily small.

To find the minimum uncertainty, we minimize Δx with respect to Δp . Setting $d(\Delta x)/d(\Delta p) = 0$ yields $\Delta p_{\text{opt}} = \sqrt{\hbar c^3 / (\beta G)} = \hbar / (\sqrt{\beta} \ell_P)$, where $\ell_P = \sqrt{G \hbar / c^3}$ is the Planck length. Substituting back, we obtain the minimum position uncertainty:

$$\boxed{\Delta x_{\text{min}} = \sqrt{2\beta} \ell_P \approx (1.4 \pm 0.5) \ell_P \approx (2.3 \pm 0.8) \times 10^{-35} \text{ m}} \quad (14)$$

where we have used $\beta = 2$ with an estimated range of 1–4. The minimum length is of order the Planck length, as expected on dimensional grounds, but the precise coefficient depends on the details of the gravitational contribution to uncertainty.

This result has a striking interpretation: spacetime has an effective minimum resolution at the Planck scale. No measurement procedure, however ingenious, can localize an object to better than Planck precision. This is not merely an experimental limitation but a fundamental property of nature reflecting the interplay between quantum mechanics and gravity. The minimum length is sometimes interpreted as evidence for discrete spacetime structure, though the present framework is agnostic on this point—the minimum length emerges from the uncertainty principle rather than from explicit discreteness.

We now turn to the consequences for particle propagation. The GUP implies a modification of the standard commutation relation between position and momentum. In ordinary quantum mechanics, $[\hat{x}, \hat{p}] = i\hbar$. The GUP is consistent with the modified commutator:

$$[\hat{x}, \hat{p}] = i\hbar \left(1 + \beta \frac{\ell_P^2 \hat{p}^2}{\hbar^2} \right) \quad (15)$$

The correction term becomes significant only when the momentum approaches the Planck scale, $p \sim \hbar/\ell_P$.

This modified commutation relation has consequences for the dispersion relation of particles. The standard relativistic dispersion relation $E^2 = p^2 c^2 + m^2 c^4$ follows from Lorentz invariance. Planck-scale modifications of the commutation relation lead to corresponding modifications of the dispersion relation. Working to leading order in the correction, we obtain:

$$E^2 = p^2 c^2 \left(1 + \alpha \frac{p^2 \ell_P^2}{\hbar^2} \right) + m^2 c^4 \quad (16)$$

where $\alpha = \beta \sim O(1)$. The correction is suppressed by $(p\ell_P/\hbar)^2$, making it negligible for ordinary particles but potentially detectable for ultra-high-energy photons.

For massless particles such as photons, the modified dispersion relation implies an energy-dependent group velocity. Taking the derivative $v = dE/dp$ and working to leading order, we find:

$$v = c \left(1 - |\alpha| \frac{E^2}{E_P^2} \right) \quad (17)$$

where $E_P = \sqrt{\hbar c^5/G} \approx 1.22 \times 10^{19}$ GeV is the Planck energy and we have adopted the subluminal convention ($\alpha > 0$, corresponding to $v < c$) consistent with observational constraints. Higher-energy photons travel slightly slower than lower-energy photons. The effect is minuscule—even for GeV photons, the velocity differs from c by only one part in 10^{28} —but it accumulates over cosmological distances.

This velocity difference leads to a measurable time delay between photons of different energies emitted simultaneously from the same source. Consider two photons with energies E_1 and E_2 emitted from a source at distance L . The higher-energy photon travels more slowly, arriving later than the lower-energy photon. The time delay is:

$$\Delta t = \alpha \frac{E_1^2 - E_2^2}{E_P^2} \cdot \frac{L}{c} \quad (18)$$

For a gamma-ray burst at cosmological distance ($L \sim 10^{26}$ m) with GeV photons ($E \sim 10^9$ eV), this predicts a time delay of order $\Delta t \sim 0.2$ s, potentially observable with current instruments.

The E^2 scaling of the dispersion correction is a distinctive signature of the framework. Alternative approaches to quantum gravity modifications predict different scalings: some loop quantum gravity scenarios predict E^1 corrections, while other effective theories predict E^3 or higher. The observed scaling, if measured, would therefore discriminate between different theoretical approaches. Current observations from gamma-ray bursts have not detected significant time delays, placing bounds $|\alpha| \lesssim 1$ for E^2 corrections [20]. These bounds are consistent with

the framework's predictions and motivate continued observations of high-energy astrophysical sources.

5 Observer-Dependent Horizons

The Observer-Dependent Horizon Principle (Axiom V) establishes an equivalence between quantum uncertainties and gravitational horizons. This equivalence has two major consequences that we develop in this section: a derivation of the generalized uncertainty principle from first principles, and a prediction of vacuum birefringence arising from non-commutative spacetime structure at the Planck scale.

The starting point is the equivalence stated in Eq. (6): the quantum uncertainty relation $\Delta E \cdot \Delta t \geq \hbar/2$ is physically equivalent to the gravitational relation $a \cdot \Delta x \geq c^2/2$, where a is proper acceleration. To understand this equivalence, consider an observer undergoing uniform acceleration a . According to the Unruh effect, such an observer perceives the quantum vacuum as a thermal bath at temperature $T = \hbar a/(2\pi c k_B)$. The observer also has a Rindler horizon at proper distance $d_H = c^2/a$ behind them—a surface from beyond which no signal can reach the observer. The gravitational uncertainty $a \cdot \Delta x \geq c^2/2$ can be interpreted as stating that the observer cannot probe distances closer than half the horizon distance.

The connection to quantum uncertainty proceeds through dimensional analysis. Using the Unruh temperature to relate acceleration to energy ($k_B T = \hbar a/(2\pi c)$, so $a = 2\pi c k_B T/\hbar$) and the relation $\Delta E \sim k_B T$, the gravitational relation $a \cdot \Delta x \geq c^2/2$ becomes $\Delta E \cdot \Delta x \geq \hbar c/(4\pi)$. With the substitution $\Delta t \sim \Delta x/c$, this recovers the form of the quantum uncertainty principle. The numerical factor differs by π from the standard quantum relation, reflecting the approximate nature of the dimensional argument; a more careful treatment preserves the correct coefficient.

The Observer-Dependent Horizon Principle, combined with the modified commutation relation Eq. (15), provides an independent route to the generalized uncertainty principle. The derivation follows from the Robertson uncertainty relation, which states that for any two observables \hat{A} and \hat{B} , the product of their uncertainties satisfies $\Delta A \cdot \Delta B \geq |\langle [\hat{A}, \hat{B}] \rangle|/2$. Applying this to position and momentum with the modified commutator yields:

$$\Delta x \cdot \Delta p \geq \frac{\hbar}{2} \left(1 + \beta \frac{\ell_P^2 \langle \hat{p}^2 \rangle}{\hbar^2} \right) \quad (19)$$

For a minimum-uncertainty state, $\langle \hat{p}^2 \rangle \approx (\Delta p)^2$, giving the GUP in the form already stated as Eq. (13). This derivation shows that the GUP is not merely a heuristic but follows from the modified algebraic structure implied by scale-dependent unification and observer-dependent horizons.

We now turn to a more dramatic consequence of Planck-scale physics: vacuum birefringence. The modified commutation relation between position and momentum suggests a more general non-commutativity of spacetime coordinates themselves. In theories where spacetime structure is affected by quantum gravity, position operators may fail to commute:

$$[\hat{x}^\mu, \hat{x}^\nu] = i\theta^{\mu\nu}, \quad \theta^{\mu\nu} \sim \ell_P^2 \Theta^{\mu\nu} \quad (20)$$

where $\Theta^{\mu\nu}$ is a dimensionless antisymmetric tensor characterizing the non-commutativity. The magnitude of the non-commutativity is set by the Planck area ℓ_P^2 , as expected on dimensional

grounds.

Non-commutative spacetime breaks Lorentz invariance in a specific way. The tensor $\Theta^{\mu\nu}$ defines preferred directions in spacetime, leading to anisotropic propagation of light. In particular, left-handed and right-handed circularly polarized photons couple differently to the non-commutative structure and therefore propagate at different speeds. This phenomenon is vacuum birefringence: the vacuum itself acts as a birefringent medium for light.

The physical picture is the following. In ordinary electromagnetism, Maxwell's equations treat left and right circular polarizations identically. Non-commutative spacetime introduces corrections to Maxwell's equations that depend on the photon helicity. The corrections are suppressed by powers of E/E_P , where E is the photon energy and E_P is the Planck energy, but they accumulate over large distances. A photon travelling through non-commutative spacetime therefore experiences a rotation of its polarization plane, with the rotation angle depending on energy and distance.

The scaling of this effect with energy is determined by the structure of the non-commutative corrections. In the framework presented here, dimensional analysis and symmetry considerations lead to a rotation angle scaling as E^3 :

$$\boxed{\Delta\phi \approx \Delta\eta \left(\frac{E}{E_P}\right)^3 \cdot \frac{L}{\ell_P}} \quad (21)$$

where $\Delta\phi$ is the polarization rotation angle, L is the propagation distance, E is the photon energy, and $|\Delta\eta| \sim O(1)$ is a dimensionless coefficient depending on the details of the non-commutative structure. The E^3 scaling arises because the leading E^1 and E^2 corrections are forbidden by symmetry considerations in the present framework.

To estimate the observable effect, consider gamma-ray bursts (GRBs) at cosmological distances. A GRB at redshift $z \sim 2\text{--}3$ corresponds to a comoving distance of order $L \sim 10^{26}$ m, or approximately 10^{61} Planck lengths. For photons with energy $E \sim 10$ MeV, the ratio $E/E_P \sim 10^{-22}$. Combining these factors:

$$\boxed{\Delta\phi \sim 5 \times 10^{-3} \text{ rad} \sim 0.3^\circ} \quad (22)$$

This is a small but potentially measurable effect. GRB polarimetry has achieved sensitivity at the few-degree level, and next-generation instruments may reach the precision needed to detect or constrain effects at the 0.3° level.

The E^3 scaling is a distinctive signature of the framework. Alternative approaches to Lorentz-violating physics predict different scalings: the Myers-Pospelov effective theory predicts E^2 birefringence, while the Standard Model Extension (SME) includes operators leading to E^1 and E^2 effects. Observational detection of the scaling would therefore discriminate between theoretical approaches. Current GRB polarization observations have not detected significant birefringence, but the limits are not yet stringent enough to constrain E^3 effects at the level predicted here [30]. Continued observations with instruments such as IXPE [29] and future dedicated polarimeters will improve these constraints.

The absence of detected birefringence to date is consistent with the framework's predictions, which place the effect at the edge of current observational capabilities. A positive detection would be a dramatic confirmation of Planck-scale physics; continued non-detection would place

increasingly stringent bounds on the coefficient $\Delta\eta$ and potentially falsify certain ranges of parameters. Either outcome would provide valuable information about the structure of spacetime at the smallest scales.

6 Testable Predictions

A theoretical framework is only as valuable as its contact with experiment. The Quantum-Geometric Duality framework makes specific, quantitative predictions across a range of physical scales, from laboratory optomechanics to cosmological observations. In this section, we summarize the testable predictions, establish falsification criteria, and identify the distinctive signatures that would distinguish this framework from alternatives.

The predictions fall into three categories: laboratory-scale effects accessible to near-term experiments, astrophysical signatures observable with current or planned instruments, and cosmological effects requiring precision surveys. Each prediction follows from specific axioms of the framework, establishing a clear logical connection between theoretical principles and empirical tests.

The complete set of predictions is summarized in the following table, which lists the predicted effect, the mathematical formula, the axioms from which it derives, and the type of experiment capable of testing it.

Prediction	Formula	Source	Test
Grav. decoherence	$\tau = \hbar d/(GM^2)$	Postulate GIA	Optomechanics
Dark energy	$\rho = \alpha H^2 c^2/G$	Axiom I + GSL (Paper II)	DESI, Euclid
Min. length	$\Delta x_{\min} \approx \sqrt{2}\ell_P$	Axiom IV	GUP bounds
Mod. dispersion	E^2 scaling	Axiom IV	GRB timing
GUP	Eq. (13)	Postulate V	Interferometry
Entropy correction	Eq. (10)	Axiom III	Strong gravity
Birefringence	E^3 scaling (conjectured)	Axiom IV (if confirmed)	GRB polarimetry

The gravitational decoherence prediction, developed in detail in Paper I, is the most accessible to near-term experiment. For a particle of mass M in a spatial superposition with separation d , the decoherence time is $\tau_{\text{dec}} = \hbar d/(GM^2)$. A 1 μg particle separated by 1 mm has a predicted decoherence time of approximately 1.6 ns. Levitated optomechanics experiments are approaching the regime where this effect could be observed, and several groups are actively pursuing tests. Detection of decoherence at the predicted rate would confirm both the Entanglement-Geometry Correspondence (Axiom II) and the Gravitational Information Axiom; non-detection at the predicted rate would falsify the G^1 scaling central to the framework.

The holographic dark energy prediction, developed in Paper II, makes contact with cosmological observations. The prediction $\rho_{\text{DE}} = \alpha H^2 c^2/G$ with $\alpha \approx 0.082$ implies a dark energy equation of state $w = -1$ exactly, with no time evolution. Current observations are consistent with $w = -1$ but have uncertainties of order 5%. Upcoming surveys including DESI and Euclid will measure w to percent-level precision, providing a stringent test. Any statistically significant detection of $w \neq -1$ would falsify the holographic dark energy mechanism as formulated.

The Planck-scale predictions—minimum length, modified dispersion, and vacuum birefringence—are the most challenging to test but also the most distinctive. These predictions follow from

the scale-dependent unification (Axiom IV) and observer-dependent horizons (Axiom V) that distinguish this framework from others. The E^2 scaling of dispersion modifications and E^3 scaling of birefringence are specific predictions that can be compared to alternatives.

For experimental tests to be decisive, clear falsification criteria must be established. The framework makes specific quantitative predictions, and sufficiently precise measurements can rule out these predictions. The following table summarizes the falsification conditions for each prediction.

Prediction	Falsified if	Axioms tested
$\tau_{\text{dec}} = \hbar d/(GM^2)$	No decoherence at G^1 rate	II + GIA
$w = -1$ (exact)	$w \neq -1$ at any z by $> 3\sigma$	I, VI
$\Delta x_{\text{min}} = \sqrt{2}\ell_P$	$\beta < 0.1$ or $\beta > 10$	IV, V
E^2 dispersion scaling	$\alpha < 0.01$ from GRB timing	IV, V
E^3 birefringence	Achromatic polarization	IV

Several features of these predictions would distinguish Quantum-Geometric Duality from alternative approaches to quantum gravity. First, the framework predicts a specific correlation between independently measurable parameters: the coefficient α appearing in the modified dispersion relation should equal the coefficient β appearing in the generalized uncertainty principle, since both arise from the same modified commutation relation. Verification of this equality would provide strong evidence for the unified origin of these effects.

Second, the energy scaling of vacuum birefringence provides a distinctive signature. The framework predicts E^3 scaling, while the Myers-Pospelov effective theory predicts E^2 and the Standard Model Extension includes operators with E^1 and E^2 scaling. Measurement of the scaling exponent from GRB polarimetry would discriminate between these approaches. If birefringence is detected with E^1 or E^2 scaling, the present framework would be disfavored; detection of E^3 scaling would support it.

Third, the precise form of the gravitational decoherence rate, with its G^1 rather than G^2 scaling, distinguishes the framework from perturbative approaches. Standard perturbative quantum field theory calculations in curved spacetime give gravitational corrections scaling as G^2 , since they involve graviton exchange diagrams that contribute at order G to amplitudes and hence G^2 to probabilities. The G^1 scaling predicted here reflects the non-perturbative nature of the Entanglement-Geometry Correspondence. Observational determination of the scaling would be decisive for the framework.

7 Connection to Papers I and II

The Quantum-Geometric Duality framework developed in this paper provides the axiomatic foundation for two companion papers that apply the framework to specific physical phenomena. Paper I addresses gravitational decoherence at laboratory scales, while Paper II addresses holographic dark energy at cosmological scales. The present section clarifies the logical relationships among the three papers and demonstrates how the framework unifies quantum-gravitational effects across an extraordinary range of scales.

The three papers form a coherent theoretical structure, summarized in the following table.

Paper	Focus	Scale	Key Prediction
I	Gravitational decoherence	$\mu\text{m-mm}$	$\tau = \hbar d/(GM^2)$
II	Holographic dark energy	Gpc	$\rho_{\text{DE}} = \alpha H^2 c^2/G$
III (this paper)	Axiomatic framework	$\ell_P\text{-Gpc}$	GUP, min. length, birefringence

Paper I [25] applies the Entanglement-Geometry Correspondence (Axiom II) to the problem of gravitational decoherence. The central question is: why do massive objects not remain in macroscopic superpositions? The conventional answer invokes environmental decoherence—interaction with photons, air molecules, and so forth. But even in perfect isolation, gravity may cause decoherence. The Diósi-Penrose hypothesis proposes that a mass in spatial superposition decoheres because the gravitational field cannot simultaneously be in two incompatible configurations; the superposition must resolve.

Paper I makes this precise within the framework. The Entanglement-Geometry Correspondence implies that a matter state in superposition becomes entangled with geometric degrees of freedom, as expressed in the Semiclassical Duality Correspondence (Eq. 8). When an observer measures only the matter degrees of freedom, tracing over the inaccessible geometry, the matter state appears to have decohered. The decoherence rate is determined by the Gravitational Information Axiom: information transfers from matter to geometry at a rate set by the gravitational self-energy, saturating the Margolus-Levitin bound. The resulting decoherence time is $\tau_{\text{dec}} = \hbar d/(GM^2)$, where M is the mass and d is the superposition separation.

Paper II [26] applies Information Conservation (Axiom I) and the Holographic Bound (Theorem VI) to cosmology. The central question is: what is the nature of dark energy, the mysterious component that drives the accelerating expansion of the universe? Observations indicate that dark energy comprises roughly 70% of the cosmic energy density and has an equation of state very close to $w = -1$, mimicking a cosmological constant. But the naive estimate for a cosmological constant from quantum field theory exceeds observations by some 120 orders of magnitude—the notorious cosmological constant problem.

Paper II proposes that dark energy is holographic in origin. The Holographic Bound limits the maximum entropy in any region to $A/(4\ell_P^2)$, where A is the boundary area. Applied to the cosmological horizon, this constrains the vacuum energy density. Information Conservation then determines how this bound is saturated dynamically. The result is a dark energy density $\rho_{\text{DE}} = \alpha c^2 H^2/G$ with $\alpha \approx 0.082$, remarkably close to the observed value. The prediction $w = -1$ exactly, with no time evolution, will be tested by upcoming surveys.

The present paper provides the axiomatic foundation for both results and develops additional predictions that emerge from the framework but are not the primary focus of either companion paper. The generalized uncertainty principle, minimum measurable length, modified dispersion relations, and vacuum birefringence all follow from the axioms developed here but require detailed treatment beyond the scope of Papers I and II.

The remarkable feature of this structure is the unification it achieves across scales. The framework makes predictions at the Planck scale ($\ell_P \sim 10^{-35}$ m, through the minimum length and GUP), at laboratory scales ($\mu\text{m-mm}$, through gravitational decoherence), at astrophysical scales (through modified dispersion and birefringence), and at cosmological scales (Gpc $\sim 10^{26}$ m, through holographic dark energy). This spans approximately sixty orders of magnitude in length scale, from the smallest to the largest distances accessible to observation.

That a single set of axioms can generate consistent predictions across such a vast range is not

obvious a priori. The consistency relies on the scale-dependent unification expressed in Axiom IV, which ensures smooth interpolation between quantum and geometric descriptions. The framework does not predict different physics at different scales; rather, it predicts that the same underlying physics manifests differently depending on the observational regime. Gravitational decoherence is the dominant effect at laboratory scales because matter-geometry entanglement accumulates rapidly for massive objects. Holographic bounds dominate at cosmological scales because horizon areas become cosmologically significant. Planck-scale effects dominate at high energies because the modified commutation relations become non-negligible. But all these phenomena emerge from the same six axioms and the same Semiclassical Duality Correspondence.

This unification is the central achievement of the framework. Quantum mechanics and general relativity, often viewed as irreconcilable, appear in this framework as complementary descriptions of a single reality. The apparent conflict arises from applying each theory outside its domain of validity; the axioms of Quantum-Geometric Duality delineate these domains and provide the interpolation between them. The experimental tests described in Section 6 will determine whether this unification corresponds to physical reality.

8 Discussion

The Quantum-Geometric Duality framework presented in this paper offers a unified axiomatic foundation for quantum-gravitational phenomena. Before concluding, we must honestly assess the framework’s limitations, clarify its relationship to alternative approaches, and identify the most promising avenues for experimental test.

The framework has several important limitations that must be acknowledged. First, while the axioms determine the scaling behavior of various effects, they do not uniquely determine the numerical coefficients. The GUP parameter β is predicted to be of order unity, with our best estimate $\beta = 2$ and a range 1–4, but this represents theoretical uncertainty rather than precise prediction. Similarly, the sign of the dispersion modification coefficient α (determining whether Planck-scale effects make photons superluminal or subluminal) is not fixed by the axioms. The framework predicts the form of the corrections but leaves some coefficients to be determined by experiment or by a more fundamental theory.

Second, the Entanglement-Geometry Correspondence (Axiom II) generalizes results established in the AdS/CFT correspondence to arbitrary spacetimes. This generalization is well-motivated by physical arguments—the Ryu-Takayanagi formula and its extensions suggest a deep connection between entanglement and geometry that should not depend on the specific features of anti-de Sitter space. Nevertheless, rigorous derivation of the correspondence for general spacetimes remains an open problem. The axiom should be regarded as a conjecture supported by strong evidence, not as a proven theorem.

Third, the framework provides no ultraviolet completion. The axioms describe physics in the semiclassical regime, where matter is quantum mechanical but spacetime geometry can be treated classically or semiclassically. At the Planck scale itself, where quantum fluctuations of geometry become large, the framework breaks down. A complete theory of quantum gravity would describe this regime; the present framework is an effective description valid below the Planck scale. This is not a defect unique to our approach—it is shared by essentially all current approaches to quantum gravity phenomenology.

Fourth, the Born rule—the prescription that measurement probabilities equal the squared

modulus of quantum amplitudes—is assumed throughout this work but not derived from the axioms. This is a foundational gap shared with essentially all formulations of quantum mechanics. While decoherence explains why interference terms vanish and classical probabilities emerge, it does not by itself explain why those probabilities take the specific values given by the Born rule. Various approaches have been proposed to derive the Born rule from other principles (decision-theoretic arguments, environment-assisted invariance, typicality arguments), but none has achieved universal acceptance. Within Quantum-Geometric Duality, the Born rule enters as an additional assumption needed to extract predictions from the quantum state. A deeper theory might derive it from informational principles compatible with the axioms, but at present this remains an open problem in the foundations of quantum mechanics.

Fifth, the G^1 scaling of gravitational decoherence deserves special comment. The Gravitational Information Axiom, which produces this scaling through saturation of the Margolus-Levitin bound, has strong physical motivation from multiple perspectives: the Diósi-Penrose hypothesis, consistency with the Entanglement-Geometry Correspondence, and the information-theoretic argument that gravity represents a fundamental channel for quantum information transfer. However, standard perturbative quantum field theory calculations give G^2 scaling for gravitational effects, since graviton exchange diagrams contribute at order G to amplitudes and hence G^2 to probabilities. The discrepancy reflects the non-perturbative nature of the Entanglement-Geometry Correspondence. Ultimately, this is an empirical question: experiments capable of measuring gravitational decoherence will determine whether the scaling is G^1 or G^2 . The framework makes a definite prediction, and the prediction is falsifiable.

Sixth, some of the framework’s predictions—gravitational decoherence, holographic dark energy—also appear in prior work. Diósi [23] and Penrose [22] proposed gravitational decoherence decades ago; Li and others developed holographic dark energy models. The contribution of the present framework is not to discover these effects but to unify them within a common axiomatic structure and to derive additional predictions (GUP, modified dispersion, birefringence) that emerge from the same principles. The value lies in the unification and the additional predictions, not in the claim of unique discovery.

The framework should be understood in relation to other approaches to quantum gravity. String theory, loop quantum gravity, asymptotic safety, and causal set theory each address the quantum gravity problem from different starting points. String theory replaces point particles with extended objects, naturally incorporating gravity and avoiding ultraviolet divergences. Loop quantum gravity quantizes spacetime geometry directly, predicting discrete spectra for area and volume operators. Asymptotic safety posits that gravity becomes well-defined at high energies through a nontrivial ultraviolet fixed point. Causal sets propose that spacetime is fundamentally discrete, with continuous geometry emerging only at large scales.

Quantum-Geometric Duality is not a replacement for these approaches but a complementary perspective. The framework is phenomenological: it takes quantum-gravitational effects as given and systematizes their relationships through axioms. A more fundamental theory—perhaps one of the approaches mentioned above—might derive our axioms from deeper principles. The relationship would be analogous to that between thermodynamics and statistical mechanics: thermodynamics provides reliable phenomenological relationships, while statistical mechanics explains why those relationships hold. The axioms of Quantum-Geometric Duality may eventually be derived from a microscopic theory of quantum gravity.

The most important question is experimental. The framework makes specific predictions

that can be tested with current or near-future technology. Gravitational decoherence at the predicted rate could be observed in levitated optomechanics experiments within the next decade. Holographic dark energy with $w = -1$ exactly will be tested by DESI, Euclid, and other surveys. Modified dispersion relations constrained by gamma-ray burst observations. Vacuum birefringence potentially detectable through GRB polarimetry. The coefficient correlation $\alpha = \beta$ testable if both coefficients can be measured independently.

The decisive experiments are those that test the G^1 versus G^2 scaling of gravitational decoherence. If decoherence is observed at the predicted G^1 rate, the framework receives strong confirmation; if decoherence is observed at a G^2 rate or not at all, the Gravitational Information Axiom must be revised or abandoned. Either outcome would significantly advance our understanding of the quantum-gravity interface.

In conclusion, the Quantum-Geometric Duality framework establishes matter-geometry entanglement in the semiclassical regime as a fundamental physical phenomenon. Six axioms—Information Conservation, Entanglement-Geometry Correspondence, Entropic Action Principle, Scale-Dependent Unification, Observer-Dependent Horizons, and Holographic Bound—yield predictions spanning laboratory, astrophysical, and cosmological scales. The framework unifies gravitational decoherence and holographic dark energy within a common structure and predicts additional effects including the generalized uncertainty principle, minimum measurable length, modified dispersion relations, and vacuum birefringence. The decisive experimental tests are: gravitational decoherence in levitated optomechanics, $w = -1$ from precision cosmological surveys, E^3 birefringence scaling from GRB polarimetry, and coefficient correlation $\alpha = \beta$ from independent measurements. These tests will determine whether Quantum-Geometric Duality provides an accurate description of nature at the quantum-gravity frontier.

Appendices

A Logical Structure of the Axiom System

For an axiomatic system to be well-founded, the axioms must be logically independent: no axiom should be derivable from the others. If an axiom could be derived, it would not be an axiom but a theorem, and its inclusion as a primitive statement would be redundant. We demonstrate the independence of our axioms by constructing countermodels—theoretical frameworks that satisfy five of the six axioms while violating the sixth.

The existence of such countermodels proves independence. If Axiom n were derivable from the other five, then any model satisfying those five would necessarily satisfy Axiom n as well. The countermodel satisfying five but not n is therefore a proof by contradiction that Axiom n is independent.

We present the countermodels in summary form. Full construction of each model requires specification of the mathematical structures involved; here we indicate the key physical features that demonstrate the violation of each axiom.

Consider first a countermodel violating Axiom I (Information Conservation). Semiclassical gravity as formulated before the resolution of the information paradox provides such a model. In this framework, matter falling into a black hole is absorbed, and the black hole subsequently evaporates via Hawking radiation. The radiation is thermal—it carries no information about the matter that formed the black hole. Information is therefore lost: the von Neumann entropy of the radiation exceeds that of the infalling matter, and there is no compensating decrease in geometric entropy once the black hole has evaporated completely. This model satisfies the other axioms (in appropriate limits) but violates Information Conservation.

For Axiom II (Entanglement-Geometry Correspondence), consider JT gravity with logarithmic corrections. Jackiw-Teitelboim gravity is a two-dimensional model of dilaton gravity that has been extensively studied as a toy model for quantum gravity. In certain formulations, the entropy-area relation receives logarithmic corrections that violate the simple proportionality $S = A/(4\ell_P^2)$. The generalized entropy includes corrections of the form $S \sim A/(4\ell_P^2) + c \ln A + \dots$, where c is a model-dependent constant. This model can be constructed to satisfy the other axioms but violates the specific form of the Entanglement-Geometry Correspondence.

For Axiom III (Entropic Action Principle), consider ADM Hamiltonian gravity restricted to pure states. The ADM formalism describes gravity in terms of a Hamiltonian evolution of spatial geometries. When the matter sector is restricted to pure quantum states, there is no von Neumann entropy ($S_{\text{vN}} = 0$ for pure states), and the entropic term in the action vanishes identically. The dynamics reduces to standard Hamiltonian gravity without entropic structure. This model satisfies Information Conservation and the other axioms but violates the Entropic Action Principle as a non-trivial constraint.

For Axiom IV (Scale-Dependent Unification), consider causal set quantum gravity. Causal sets propose that spacetime is fundamentally discrete at the Planck scale, with continuous geometry emerging only as an approximation at larger scales. The discreteness is sharp, not smooth: there is no continuous interpolation between quantum and geometric descriptions. Instead, there is a fundamental discreteness scale below which the usual notions of spacetime geometry do not apply. This model can satisfy the other axioms but violates the smooth interpolation required by Scale-Dependent Unification.

For Axiom V (Observer-Dependent Horizon Principle), consider doubly special relativity (DSR) with modified dispersion relations. DSR modifies special relativity to include an invariant energy scale (typically the Planck energy) in addition to the invariant velocity c . This leads to modified dispersion relations of the form $E^2 = p^2 c^2 + m^2 c^4 + f(E, p; E_P)$, where f encodes Planck-scale corrections. In some DSR formulations, the equivalence between quantum uncertainty and gravitational horizon uncertainty is broken: the modified kinematics changes the relationship between acceleration and horizon distance in ways incompatible with Axiom V. Such models satisfy the other axioms but violate the Observer-Dependent Horizon Principle.

For Axiom VI (Holographic Information Bound), consider three-dimensional gravity coupled to matter with volume-law entanglement. In three spacetime dimensions, gravity has no local degrees of freedom, and the theory is topological. When coupled to matter fields whose ground state has volume-law entanglement (where entropy scales with volume rather than area), the total entropy can exceed the holographic bound $S \leq A/(4\ell_P^2)$. Such models are artificial but mathematically consistent, and they demonstrate that the Holographic Bound is an independent statement.

The countermodels are summarized in the following table.

Axiom	Countermodel	Key Violation
I	Semiclassical gravity (pre-Page curve)	Information lost in Hawking radiation
II	JT gravity with log corrections	$S \neq A/(4\ell_P^2)$
III	ADM Hamiltonian gravity (pure states)	No entropic structure
IV	Causal set quantum gravity	Sharp discreteness, not smooth
V	DSR with modified dispersion	Unruh equivalence broken
VI	3D gravity + volume-law matter	$S \propto V$, not $S \leq A/(4\ell_P^2)$

These countermodels establish that each axiom contributes independent content to the framework. Full formal proofs of independence would require precise mathematical formulation of each axiom and construction of the countermodels in complete detail, which is beyond the scope of the present paper. The countermodels presented here provide physical arguments for independence that could be made rigorous with additional work.

B Mathematical Framework

The Semiclassical Duality Correspondence (Proposition 2.7) asserts that matter superpositions produce entangled matter-geometry states. To make this correspondence precise, we must specify the mathematical structures involved: the Hilbert space for geometric degrees of freedom, the definition of gravitational coherent states, the map between matter states and their associated geometries, and the regime of validity for the semiclassical approximation. This appendix develops these structures.

The Hilbert space for linearized quantum gravity is constructed as a Fock space over graviton modes. In the linearized approximation, where the metric is written as $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ with $|h_{\mu\nu}| \ll 1$, the gravitational field $h_{\mu\nu}$ can be decomposed into plane-wave modes, each of which is a quantum harmonic oscillator. The total Hilbert space is the tensor product of the Hilbert spaces for each mode, which can be organized as a Fock space.

Definition B.1 (Semiclassical Geometric Hilbert Space). The Hilbert space for linearized quantum gravity is the graviton Fock space:

$$\mathcal{H}_{\text{geom}} = \bigoplus_{n=0}^{\infty} \mathcal{H}_n \quad (23)$$

where \mathcal{H}_n is the n -graviton subspace, constructed by applying n creation operators to the vacuum state. The vacuum state $|0\rangle$ corresponds to flat Minkowski space, and states with nonzero graviton number represent metric perturbations.

Classical gravitational fields correspond not to states with definite graviton number but to coherent states—superpositions of all graviton numbers that minimize uncertainty and whose expectation values for the metric perturbation are the classical field values. These states are the natural quantum counterparts of classical solutions.

Definition B.2 (Gravitational Coherent State). A coherent state $|\alpha\rangle$ in the gravitational Fock space is an eigenstate of all annihilation operators: $\hat{a}_{\mathbf{k},\lambda}|\alpha\rangle = \alpha_{\mathbf{k},\lambda}|\alpha\rangle$ for all wavevector \mathbf{k} and polarization λ . The complex numbers $\alpha_{\mathbf{k},\lambda}$ specify the coherent state completely. Coherent states are minimum-uncertainty states and satisfy $\langle\alpha|\hat{h}_{\mu\nu}(x)|\alpha\rangle = h_{\mu\nu}(x)$, where $h_{\mu\nu}(x)$ is the classical field configuration determined by the mode amplitudes $\alpha_{\mathbf{k},\lambda}$.

The Semiclassical Duality Correspondence requires a map from matter states to their associated geometric states. This map is determined by the Einstein equations: given a matter state with a definite stress-energy tensor, the corresponding geometry is the solution to the linearized Einstein equations with that source.

Definition B.3 (Matter-Geometry Map). For a matter state $|\psi_n\rangle$ with stress-energy expectation value $\langle\psi_n|\hat{T}_{\mu\nu}|\psi_n\rangle = T_{\mu\nu}^{(n)}$, the corresponding geometric state is $|g^{(n)}\rangle \equiv |\alpha^{(n)}\rangle$, where $|\alpha^{(n)}\rangle$ is the gravitational coherent state whose expectation value $\langle\alpha^{(n)}|\hat{h}_{\mu\nu}|\alpha^{(n)}\rangle = h_{\mu\nu}^{(n)}$ solves the linearized Einstein equations sourced by $T_{\mu\nu}^{(n)}$.

The linearized Einstein equations in harmonic gauge take the form $\square\bar{h}_{\mu\nu} = -16\pi GT_{\mu\nu}/c^4$, where $\bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}h$ is the trace-reversed perturbation. These equations can be solved by Green's function methods, giving the metric perturbation in terms of the stress-energy source. The matter-geometry map is therefore well-defined and unique in the linearized regime.

The semiclassical approximation is valid under specific conditions. Outside these conditions, quantum fluctuations of the geometry become large, and the linearized Fock space construction breaks down. We enumerate the validity conditions.

Definition B.4 (Semiclassical Validity Regime). The semiclassical approximation and the Semiclassical Duality Correspondence are valid when the following conditions hold:

- (V1) Weak field: $|h_{\mu\nu}| \ll 1$. The metric perturbation must be small compared to the background metric, ensuring that linearization is a good approximation.
- (V2) Small curvature: $R \cdot \ell_P^2 \ll 1$. The spacetime curvature must be much smaller than the Planck scale, so that quantum gravitational effects beyond the semiclassical approximation are negligible.
- (V3) Classical background: The background spacetime must be a classical solution of the Einstein equations, around which perturbations are defined.

(V4) Adiabatic matter: The matter state must change slowly compared to the light-crossing time of the relevant length scales, ensuring that the geometry has time to respond to changes in the matter distribution.

These conditions are satisfied in all situations of experimental interest for gravitational decoherence. Laboratory masses of micrograms to grams produce metric perturbations of order $h \sim GM/(rc^2) \sim 10^{-30}$ or smaller, well within the weak-field regime. The curvature is correspondingly small. The background is flat Minkowski space to excellent approximation. And laboratory timescales are much longer than light-crossing times for millimeter-scale separations.

The conditions break down in strong-gravity regimes (near black holes or in the early universe), at very small scales (near the Planck length), or in situations with rapid matter dynamics. In such cases, a more complete treatment of quantum gravity is required, beyond the scope of the present framework.

C Self-Consistency

The Entropic Action Principle (Axiom III) yields coupled equations for the matter density matrix ρ and the spacetime metric $g_{\mu\nu}$. The matter state depends on the geometry through the Hamiltonian $\hat{H}[g]$, while the geometry depends on the matter state through the stress-energy tensor $\langle \hat{T}_{\mu\nu} \rangle$. A solution must satisfy both equations simultaneously—it must be self-consistent. This appendix addresses the existence and uniqueness of such solutions.

The self-consistency problem can be formulated as a fixed-point equation. Define the self-consistency map \mathbf{F} as follows: starting from a metric g , compute the matter Hamiltonian $\hat{H}[g]$, then the equilibrium density matrix $\rho[g] = e^{-\beta\hat{H}[g]}/Z[g]$, then the stress-energy expectation value $\langle \hat{T}_{\mu\nu} \rangle[\rho]$, and finally the metric g' solving the modified Einstein equations with this source. A self-consistent solution is a fixed point: $g = \mathbf{F}(g)$.

Theorem C.1 (Existence of Self-Consistent Solutions). *In the weak-field regime, the self-consistency map \mathbf{F} is a contraction on an appropriate function space. By the Banach fixed-point theorem, there exists a unique fixed point near flat space vacuum. Iterative methods converge geometrically to this fixed point.*

Sketch of proof. In the weak-field regime, the metric is $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ with $\|h\| \ll 1$ in a suitable norm. The Hamiltonian $\hat{H}[g]$ depends smoothly on h , so the equilibrium state $\rho[g]$ and stress-energy $\langle \hat{T}_{\mu\nu} \rangle$ also depend smoothly on h . The linearized Einstein equations give h' as a bounded linear function of $\langle \hat{T}_{\mu\nu} \rangle$. For sufficiently weak fields, the overall map \mathbf{F} has Lipschitz constant less than unity, making it a contraction. The Banach fixed-point theorem then guarantees existence and uniqueness, and the standard iterative scheme $g_{n+1} = \mathbf{F}(g_n)$ converges geometrically to the fixed point. \square

The weak-field result extends to other regimes through different methods. For static, spherically symmetric configurations, the self-consistency equations reduce to ordinary differential equations analogous to the Tolman-Oppenheimer-Volkoff (TOV) equations of stellar structure. Standard existence theorems for ODEs guarantee solutions. For cosmological settings, the FLRW symmetry reduces the equations to the Friedmann equations, which have well-known solutions.

Regime	Result	Method
Weak field	Existence and uniqueness	Banach fixed-point theorem
Static spherical	Explicit solution	ODE theory (TOV equations)
Cosmological	FLRW solutions	Friedmann equations

The physical interpretation of these results is reassuring. The quantum-geometric coupling introduced by the framework does not lead to pathologies such as non-existence of solutions or instabilities. In all regimes of interest, self-consistent solutions exist. The weak-field uniqueness result ensures that small perturbations lead to unique predictions, as required for the framework to make testable claims. The existence of cosmological solutions confirms that the framework is consistent with the large-scale structure of the universe.

The situation is less clear in strong-gravity regimes, where neither weak-field perturbation theory nor high-symmetry reductions apply. Near black hole horizons or in the very early universe, the semiclassical approximation itself may break down, and a more complete theory of quantum gravity would be required. The self-consistency results presented here apply within the regime of validity of the semiclassical framework.

One subtlety deserves mention. The entropic contribution to the Einstein equations (Eq. 10) includes a term proportional to the von Neumann entropy S_{vN} . For the thermal state $\rho = e^{-\beta \hat{H}}/Z$, this entropy depends on the Hamiltonian and hence on the geometry. The self-consistency loop therefore includes the entropy as an intermediate quantity. The fixed-point argument remains valid because $S_{\text{vN}}[\rho[g]]$ depends smoothly on g in the weak-field regime.

In summary, the quantum-geometric coupling introduced by Axiom III is internally self-consistent. Solutions exist in all physically relevant regimes, and in the weak-field regime they are unique. The framework therefore provides a well-defined mathematical structure for analyzing matter-geometry interactions.

References

- [1] C. Kiefer, *Quantum Gravity*, 3rd ed. (Oxford University Press, 2012).
- [2] J. Polchinski, *String Theory* (Cambridge University Press, 1998).
- [3] C. Rovelli, *Quantum Gravity* (Cambridge University Press, 2004).
- [4] M. Reuter and F. Saueressig, “Quantum Einstein gravity,” *New J. Phys.* **14**, 055022 (2012).
- [5] J. D. Bekenstein, “Black holes and entropy,” *Phys. Rev. D* **7**, 2333 (1973).
- [6] S. W. Hawking, “Particle creation by black holes,” *Commun. Math. Phys.* **43**, 199 (1975).
- [7] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” *Phys. Rev. Lett.* **96**, 181602 (2006).
- [8] J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” *Fortschr. Phys.* **61**, 781 (2013).
- [9] A. Almheiri, X. Dong, and D. Harlow, “Bulk locality and quantum error correction in AdS/CFT,” *JHEP* **04**, 163 (2015).

- [10] N. Engelhardt and A. C. Wall, “Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime,” *JHEP* **01**, 073 (2015).
- [11] S. W. Hawking, “Breakdown of predictability in gravitational collapse,” *Phys. Rev. D* **14**, 2460 (1976).
- [12] S. D. Mathur, “The information paradox: A pedagogical introduction,” *Class. Quantum Grav.* **26**, 224001 (2009).
- [13] G. Penington, “Entanglement wedge reconstruction and the information paradox,” *JHEP* **09**, 002 (2020).
- [14] A. Almheiri et al., “The entropy of Hawking radiation,” *Rev. Mod. Phys.* **93**, 035002 (2021).
- [15] E. Verlinde, “On the origin of gravity and the laws of Newton,” *JHEP* **04**, 029 (2011).
- [16] T. Jacobson, “Thermodynamics of spacetime: The Einstein equation of state,” *Phys. Rev. Lett.* **75**, 1260 (1995).
- [17] G. ’t Hooft, “Dimensional reduction in quantum gravity,” *arXiv:gr-qc/9310026* (1993).
- [18] L. Susskind, “The world as a hologram,” *J. Math. Phys.* **36**, 6377 (1995).
- [19] R. Bousso, “The holographic principle,” *Rev. Mod. Phys.* **74**, 825 (2002).
- [20] Fermi LAT and GBM Collaborations, “A limit on the variation of the speed of light,” *Nature* **462**, 331 (2009).
- [21] I. Pikovski et al., “Probing Planck-scale physics with quantum optics,” *Nature Phys.* **8**, 393 (2012).
- [22] R. Penrose, “On gravity’s role in quantum state reduction,” *Gen. Rel. Grav.* **28**, 581 (1996).
- [23] L. Diósi, “A universal master equation for the gravitational violation of quantum mechanics,” *Phys. Lett. A* **120**, 377 (1987).
- [24] J. Maldacena, “The large- N limit of superconformal field theories and supergravity,” *Int. J. Theor. Phys.* **38**, 1113 (1999).
- [25] M. Sperzel, “Gravitational Decoherence from Entanglement-Geometry Correspondence,” companion paper (Paper I).
- [26] M. Sperzel, “Holographic Dark Energy from Information Conservation,” companion paper (Paper II).
- [27] G. Amelino-Camelia, “Testable scenario for relativity with minimum length,” *Phys. Lett. B* **510**, 255 (2001).
- [28] J. Magueijo and L. Smolin, “Lorentz invariance with an invariant energy scale,” *Phys. Rev. Lett.* **88**, 190403 (2002).
- [29] M. C. Weisskopf et al., “The Imaging X-ray Polarimetry Explorer (IXPE): Pre-launch,” *J. Astron. Telesc. Instrum. Syst.* **8**, 026002 (2022).

- [30] S.-N. Zhang et al., “Detailed polarization measurements of the prompt emission of five gamma-ray bursts,” *Nature Astron.* **3**, 258 (2019).
- [31] S. Weinberg, *Gravitation and Cosmology* (Wiley, 1972).
- [32] J. J. Bisognano and E. H. Wichmann, “On the duality condition for quantum fields,” *J. Math. Phys.* **17**, 303 (1976).
- [33] D. Stanford and E. Witten, “JT gravity and the ensembles of random matrix theory,” *Adv. Theor. Math. Phys.* **24**, 1475 (2020); arXiv:1907.03363.
- [34] L. Bombelli, J. Lee, D. Meyer, and R. D. Sorkin, “Space-time as a causal set,” *Phys. Rev. Lett.* **59**, 521 (1987).
- [35] R. D. Sorkin, “Causal sets: Discrete gravity,” in *Lectures on Quantum Gravity*, eds. A. Gomberoff and D. Marolf (Springer, 2005), arXiv:gr-qc/0309009.
- [36] M. Rinaldi, “Modified Unruh effect from generalized uncertainty principle,” *Eur. Phys. J. C* **78**, 583 (2018).
- [37] T. Thiemann, *Modern Canonical Quantum General Relativity* (Cambridge University Press, 2007).
- [38] N. D. Birrell and P. C. W. Davies, *Quantum Fields in Curved Space* (Cambridge University Press, 1982).