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Abstract

We present a complete axiomatic framework for Quantum-Geometric Duality, the hypothesis
that quantum mechanics and general relativity are complementary descriptions of a single
underlying reality. The framework rests on four primitive axioms: Information Conservation,
Entanglement-Geometry Correspondence, the Entropic Action Principle, and Scale-Dependent
Unification. Two additional statements complete the structure: an observer-dependent
horizon principle adopted as a postulate, and a holographic information bound derivable from
the primitives together with the generalized second law. We show that matter superpositions
produce entangled matter-geometry states in the semiclassical regime. From the axioms we
derive testable predictions including modified Einstein equations with entropy corrections,
the generalized uncertainty principle, a minimum measurable length of order the Planck
scale, modified dispersion relations with characteristic E? scaling, and vacuum birefringence
with E? scaling observable through gamma-ray burst polarimetry. The framework provides
a unified foundation for gravitational decoherence and holographic dark energy, connecting
quantum-gravitational phenomena across sixty orders of magnitude in scale.

1 Introduction

The reconciliation of quantum mechanics and general relativity remains the central open problem
in theoretical physics. Despite nearly a century of effort, no complete theory of quantum gravity
has emerged that is both mathematically consistent and empirically verified. String theory,
loop quantum gravity, and asymptotic safety each offer partial insights, yet none has produced
unambiguous experimental predictions accessible to current technology. The difficulty is not
merely technical; it reflects a conceptual tension between the foundational principles of the two
theories. Quantum mechanics describes nature in terms of state vectors evolving unitarily in a
fixed background spacetime, while general relativity treats spacetime itself as a dynamical entity
shaped by matter and energy. Any attempt at unification must address this asymmetry.
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In recent years, developments in black hole physics and holography have suggested a possible
resolution. The Bekenstein-Hawking entropy formula [5, 6], the Ryu-Takayanagi prescription
[7], and the ER=EPR conjecture [8] all point toward a deep connection between quantum
entanglement and the geometry of spacetime. These results, emerging from the study of
black holes and the AdS/CFT correspondence, suggest that entanglement may not merely
correlate distant quantum systems but may actually constitute the fabric of spacetime itself. If
this perspective is correct, then quantum mechanics and general relativity are not competing
descriptions requiring reconciliation, but complementary projections of a single underlying
reality—much as wave and particle descriptions complement one another in ordinary quantum
mechanics.

The present paper develops this perspective into a complete axiomatic framework, which we
call Quantum-Geometric Duality. The framework is built upon four primitive axioms: Information
Conservation, which asserts that total quantum information is preserved across all physical
processes; Entanglement-Geometry Correspondence, which identifies quantum entanglement
with geometric area; the Entropic Action Principle, which governs the dynamics of coupled
matter-geometry systems; and Scale-Dependent Unification, which describes how quantum
and geometric descriptions interpolate as a function of scale. Two additional results complete
the structure: an Observer-Dependent Horizon Principle relating quantum and gravitational
uncertainties, and a Holographic Information Bound derivable from the primitive axioms together
with the generalized second law of thermodynamics.

This paper is the third in a series developing the Quantum-Geometric Duality framework.
Paper I [25] applies the Entanglement-Geometry Correspondence to derive the gravitational
decoherence rate Tqe. = hd/(GM?), showing how spatial superpositions of massive objects
decohere through entanglement with the gravitational field. Paper II [26] applies Information
Conservation and the Holographic Bound to cosmology, deriving a holographic dark energy
density ppg = ac’?H?/G with a =~ 0.082 consistent with observations. The present paper
provides the complete axiomatic foundation underlying both results, develops Axioms I11-V
in detail, and derives additional predictions including the generalized uncertainty principle,
minimum measurable length, modified dispersion relations, and vacuum birefringence.

The structure of the paper is as follows. Section 2 presents the complete axiom system,
discussing the physical motivation and interpretation of each axiom and clarifying the logical
relationships among them. Section 3 develops the entropic dynamics arising from Axiom III,
deriving modified Einstein equations with entropy corrections and explaining the thermodynamic
origin of local temperature. Section 4 explores the consequences of scale-dependent unification,
including the existence of a minimum measurable length and modified dispersion relations.
Section 5 addresses observer-dependent horizons, deriving the generalized uncertainty principle
and predicting vacuum birefringence from non-commutative spacetime structure. Section 6
summarizes the testable predictions of the framework and establishes falsification criteria.
Section 7 relates the present work to Papers I and II, demonstrating how the framework unifies
quantum-gravitational effects across sixty orders of magnitude in scale. Section 8 discusses
limitations, connections to alternative approaches, and prospects for experimental tests.

Three appendices provide technical details. Appendix A establishes the logical independence
of the axioms through explicit countermodels. Appendix B develops the mathematical framework
for semiclassical matter-geometry coupling. Appendix C proves the existence and uniqueness of
self-consistent solutions in the weak-field regime.



Series context. This paper presents the complete axiomatic structure underlying the
companion papers: Paper A (gravitational decoherence), Paper B (holographic dark energy),
and Paper H (information-theoretic bounds). Each paper is self-contained; this paper provides

the unifying framework.

2 The Axiom Structure

Any attempt to unify quantum mechanics and general relativity must begin with a clear
statement of foundational principles. The history of physics demonstrates that axiomatization
reveals the conceptual core of a theory. Maxwell’s equations, once axiomatized, made the
existence of electromagnetic waves manifest; Einstein’s postulates for special relativity exposed
the conventional nature of simultaneity. We adopt an axiomatic approach because the tension
between quantum mechanics and general relativity is fundamentally conceptual, and conceptual
tensions are best addressed by making foundational assumptions explicit.

The framework we develop requires four primitive axioms, which cannot be derived from more
basic principles within the theory. Two additional statements complete the structure: an observer-
dependent horizon principle that we adopt as a postulate, and a holographic bound that can be
derived from the primitive axioms together with the generalized second law of thermodynamics.
We also formulate a Semiclassical Duality Correspondence describing how matter superpositions
couple to geometry, and a Gravitational Information Axiom governing the rate of information
transfer. The logical relationships among these statements are clarified throughout this section,
and their independence is established through countermodels in Appendix A.

2.1 Information Conservation

The first axiom addresses the fate of quantum information in gravitational processes. The black
hole information paradox, first articulated by Hawking [11], demonstrated that semiclassical
gravity appears to destroy information: a pure quantum state collapsing to form a black hole
appears to emerge as thermal Hawking radiation, violating unitarity. Decades of work on the
paradox—including the Page curve [13], quantum extremal surfaces [10], and island calculations
[14]—have converged on the conclusion that information is preserved, though the mechanism
requires physics beyond semiclassical gravity.

We elevate information conservation to an axiom, extending it beyond black holes to all
gravitational processes. The key insight is that information can be stored not only in matter
degrees of freedom but also in geometric degrees of freedom associated with horizons. We
therefore postulate that the total information content of any closed system, accounting for both
matter and geometry, remains constant.

Axiom 2.1 (Information Conservation). The total information content of any closed system is

conserved:

| Stotal = Sen(p) + Smn(g) = const | (1)

where Syn(p) = —Tr(plnp) is the von Neumann entropy of the matter quantum state and
Sen(g) = A(H)/(4¢%) is the Bekenstein-Hawking entropy associated with horizons in the

geometry.



This axiom has immediate physical consequences. When matter degrees of freedom become
inaccessible—as when matter falls behind a black hole horizon—information is not lost but
transferred to geometric degrees of freedom. The sum Syn + Sgmg remains constant even as
its individual terms change. This provides a resolution to the information paradox within the
framework: information is never destroyed, only redistributed between matter and geometry.

The axiom also constrains the dynamics of quantum-gravitational systems. Any process that
increases the geometric entropy Sgp must correspondingly decrease the matter entropy Syn, and
vice versa. This coupling between matter and geometry, mediated by information conservation,
underlies the gravitational decoherence derived in Paper I.

2.2 Entanglement-Geometry Correspondence

The second axiom formalizes the connection between quantum entanglement and spacetime
geometry suggested by holographic results. The Ryu-Takayanagi formula [7] established that in
AdS/CFT, the entanglement entropy of a boundary region equals the area of a minimal surface
in the bulk, divided by 46%3. Subsequent developments extended this to quantum extremal
surfaces [10] and to dynamical situations. The ER=EPR conjecture [8] went further, proposing
that entanglement between quantum systems corresponds to wormhole connections in spacetime
geometry.

These results, while derived in specific contexts, suggest a general principle: quantum
entanglement and geometric area are two descriptions of the same physical quantity. We
formalize this as our second axiom, generalizing beyond the AdS/CFT context to arbitrary

semiclassical spacetimes.

Axiom 2.2 (Generalized Entanglement-Geometry Correspondence). For a system in the semi-
classical gravitational regime, the generalized entropy associated with a codimension-two surface
X is given by:

A(X
Sgen(X) = 4(@ ) + Sext(X) + AScorr (2)
P

where A(X) is the proper area of the surface, Sext(X) is the von Neumann entropy of quantum
fields in the exterior region, and AScq; encodes higher-order corrections.

The structure of this formula merits discussion. The first term, A/(4¢%), represents the
classical geometric contribution—the Bekenstein-Hawking entropy. The second term accounts for
quantum field contributions outside the surface. The correction term ASco, includes subleading
effects that become important in strong-gravity regimes or at very small scales.

This axiom has a profound implication: the geometry of spacetime encodes the entanglement
structure of quantum fields, and vice versa. A change in entanglement must be accompanied by
a change in geometry. When a quantum system in superposition becomes entangled with its
environment, the corresponding geometric degrees of freedom also change, leading to gravitational
decoherence. Paper I derives the decoherence rate from this axiom, showing that spatial
superpositions of massive objects decohere on a timescale Tgec = hd/(GM?).

2.3 Entropic Action Principle

The third axiom governs the dynamics of coupled matter-geometry systems. Standard general

relativity derives Einstein’s equations from the Einstein-Hilbert action by varying with respect



to the metric. Quantum field theory derives matter dynamics from a matter action by varying
with respect to field configurations. The challenge in quantum gravity is to formulate a unified
action governing both.

Our approach incorporates entropy directly into the action principle, following insights from
thermodynamic approaches to gravity [15]. The idea is that gravity, like thermodynamics, may
emerge from more fundamental microscopic physics through entropic considerations. We include
not only the usual matter Hamiltonian and gravitational curvature terms, but also an entropic
contribution proportional to the von Neumann entropy.

Axiom 2.3 (Entropic Action Principle). In the semiclassical regime—where gravity is classical
(g & c-number) and matter is quantum (p a density operator on the fixed background)—

dynamics extremizes:

'R Swn(p)

r 167G 3 (3)

S[p,g] = /d4x\/?g [<ﬁmatter>

where <f]matter> p = Tr(pf[matter), and the local inverse temperature 3(z) satisfies the Tolman-
Ehrenfest relation 5,/gog = const along timelike curves.

The three terms in this action have clear physical interpretations. The first term is the
expectation value of the matter Hamiltonian, representing matter energy. The second term is
the Einstein-Hilbert curvature scalar, governing gravitational dynamics. The third term is the
von Neumann entropy weighted by temperature, representing the tendency of systems to evolve
toward maximum entropy.

Extremizing this action yields the field equations of the theory, as we develop in Section 3.
Variation with respect to the metric produces modified Einstein equations with an entropic stress-
energy correction. Variation with respect to the density matrix produces a thermal equilibrium
condition. The Unruh temperature emerges naturally from the entanglement structure via the

Bisognano-Wichmann theorem [32].

Remark 2.1 (Microfoundation: Entanglement Equilibrium). The Entropic Action Principle is
not an independent postulate but emerges from a more fundamental principle: entanglement
equilibrium in causal diamonds. Following Jacobson’s thermodynamic derivation of Einstein’s
equations [16], consider a small causal diamond D with boundary area A and bulk entanglement
entropy Spuk. The first law of entanglement (Bisognano-Wichmann theorem) gives §.Spui = 0(K),
where K = 27 [, (2 —72)/(20)]Too dV is the modular Hamiltonian. The Raychaudhuri equation
applied to the null boundary gives 64 < —¢T1Gyy. Demanding stationarity of generalized

entropy,
0A

0Sgen = wcn 0Sbuik = 0, (4)
yields Einstein’s equations G, = 8wGT),,, without postulating an action—the geometric and
matter prefactors cancel exactly.

The Entropic Action Principle represents the effective coarse-grained description of this
microscopic equilibrium when integrated over all causal diamonds. Crucially, the parameter
B is the modular temperature associated with the local causal diamond—mnot a global thermal
bath. For accelerated observers, 5 = 2mc/a gives the Unruh temperature; near black hole

horizons, = 27 /k gives the Hawking temperature; in flat space far from horizons, 8 — oo (zero



temperature, pure state). This interpretation resolves the apparent tension between the Gibbs
state result p oc e 7P and the manifestly non-thermal state of the universe: the “thermality” is
local and modular, not global.

2.4 Scale-Dependent Unification

The fourth axiom addresses the transition between quantum and classical descriptions. At
microscopic scales, quantum mechanics provides the accurate description; at macroscopic scales,
classical general relativity suffices. The axiom asserts that these descriptions are not in conflict
but interpolate smoothly as a function of scale.

Axiom 2.4 (Scale-Dependent Unification). Physical observables interpolate smoothly between
quantum and geometric descriptions via a scale-dependent weighting:

r

Ounified (%) = poum () - f (Z}) +per(2) - [1 -/ (513)

(5)

where f(z) = 1/(1+ 2?) is an interpolating function and ¢p = /Gh/c? is the Planck length.

Remark 2.2 (Interpolation Function). The function f(x) = 1/(1 + z?) is motivated by renor-
malization group flow. Consider a beta function of logistic form 3(g) = —g(1 — g), which has
UV fixed point ¢ = 0 and IR fixed point ¢ = 1. The RG trajectory connecting them has profile
g(n) = 1/(1 4 (1/ps)?) where p. is the crossover scale. Identifying u. = 1/¢p gives the stated
form. Alternative interpolation functions satisfying f(0) = 1, f(co) = 0, and smoothness would
give qualitatively similar physics; we adopt this specific form for definiteness.

This axiom has several important consequences. It implies the existence of a minimum
measurable length, since the quantum and geometric descriptions cannot be simultaneously
arbitrarily precise. It also leads to modified dispersion relations for particles propagating through
Planck-scale structured spacetime, as we derive in Section 4. These modifications, while small,
may be detectable through observations of high-energy astrophysical sources.

2.5 Observer-Dependent Horizons

The fifth statement in our framework addresses the relationship between quantum and gravi-
tational uncertainties. The Heisenberg uncertainty principle AE - At > h/2 governs quantum
measurements. The Unruh effect establishes that an accelerating observer perceives a thermal
bath at temperature T' = ha/(2nckp). We postulate that these two phenomena reflect a deeper

equivalence between quantum and gravitational uncertainties.

Axiom 2.5 (Observer-Dependent Horizon Principle). Quantum and gravitational uncertainties
are equivalent manifestations of the same underlying physics:

62

AE - At > = CL'A%Z? (6)

N | St

where a is proper acceleration.

This equivalence connects the quantum uncertainty principle to gravitational effects. An

accelerating observer has a Rindler horizon at distance c?/a; the gravitational uncertainty



a-Ax > c?/2 can be interpreted as a statement about the minimum distance from this horizon.
The quantum uncertainty AE - At > h/2 then becomes a statement about the energy fluctuations
associated with this horizon.

Unlike the first four axioms, which we take as primitive, the observer-dependent horizon
principle has the status of a postulate: it expresses a physical equivalence suggested by known
results but not derivable from more basic principles within our framework. A deeper theory
might derive this equivalence from more fundamental considerations. In Section 5, we derive
the generalized uncertainty principle from this postulate, combining quantum and gravitational

contributions to position-momentum uncertainty.

2.6 Holographic Information Bound (Derived)

The sixth statement in our framework is not an independent axiom but a theorem derivable from
Axiom I (Information Conservation) together with the generalized second law of thermodynamics.
The holographic principle, proposed by 't Hooft [17] and developed by Susskind [18] and Bousso
[19], asserts that the maximum entropy in a region is bounded by the area of its boundary, not
its volume.

Theorem 2.6 (Holographic Bound). From Aziom I (Information Conservation) and the Gen-

eralized Second Law:

A
Smax < <3 (7)
max 4£2P
Sketch. Axiom I states Siotal = Syn + Sgn is conserved. The GSL requires Sgen = Smatter +

A/ (46%3) to increase. Combining these with the requirement that Spatter cannot exceed the
horizon capacity yields the bound. O

While this statement follows from earlier axioms via the generalized second law, we include
it explicitly because of its central importance to the framework. The holographic bound
fundamentally constrains the information content of spacetime regions and, when applied to
cosmological horizons, yields the holographic dark energy derived in Paper II.

2.7 Semiclassical Duality Correspondence

Having established the axioms, we now formulate the central physical result of the framework:
how matter superpositions couple to geometry in the semiclassical regime. The Entanglement-
Geometry Correspondence (Axiom II) implies that changes in quantum state must be ac-
companied by changes in geometry. We make this precise through the Semiclassical Duality
Correspondence.

Proposition 2.7 (Semiclassical Matter-Geometry Entanglement). In the semiclassical regime,

superpositions of matter states produce entangled matter-geometry states:

0) =D caltn) = [Wiorat) = D calthn) © o) (8)

where |a™) are gravitational coherent states with expectation value (a(")|ﬁw|a(”)) = hgf,)

satisfying the linearized Einstein equations sourced by |iy).



This result captures the essence of Quantum-Geometric Duality. A matter state in superpo-
sition does not source a single classical geometry; instead, each branch of the superposition is
correlated with its corresponding geometric perturbation. The total state is entangled: matter
and geometry cannot be described independently. The mathematical framework underlying this
correspondence, including the definition of gravitational coherent states and the semiclassical
validity regime, is developed in Appendix B.

The entanglement between matter and geometry has measurable consequences. When
an external observer traces over the geometric degrees of freedom (which are inaccessible to
typical laboratory measurements), the matter state appears to undergo decoherence. This is the
gravitational decoherence analyzed in Paper I.

2.8 Gravitational Information Axiom

Finally, we formulate a principle governing the rate at which information is transferred between
matter and geometric degrees of freedom. The Diési-Penrose formula for gravitational decoherence
[23, 22] suggests that the gravitational self-energy Egray = GM 2/d sets the energy scale for
decoherence. The question is how this energy scale relates to the decoherence rate.

The Margolus-Levitin bound from quantum information theory establishes that the maximum
rate of quantum state evolution is 2E /(wh), where E is the energy available to drive the evolution.
We hypothesize that gravitational information transfer saturates this bound.

Principle 2.8 (Gravitational Information Axiom (GIA)). Gravitational information transfer
between matter and geometric degrees of freedom saturates the Margolus-Levitin bound:

dIS:G 2E rav GM2
i = an o Pee= ©)

This gives G scaling for decoherence, rather than the perturbative G2 scaling.

This principle is physically motivated by multiple considerations: saturation of the Margolus-
Levitin bound, the Diési-Penrose hypothesis, and consistency with the Entanglement-Geometry
Correspondence. However, perturbative quantum field theory calculations generically give G2
scaling for gravitational effects. The question of G versus G? scaling is therefore an empirical
one, to be settled by experiment. We discuss the status of this scaling in Section 8.

2.9 Axiomatic Structure Summary

Primitive Axioms (independent, cannot be derived):

Axiom | Content Physical Basis
I Information Conservation Unitarity
II Entanglement-Geometry Correspondence | Holography
111 Entropic Action Principle Entanglement equilibrium
v Scale-Dependent Unification RG flow

Postulates (additional assumptions, not derived from I-IV):
Postulate | Content Status
A% Observer-Dependent Horizon Principle | Assumed
GIA Gravitational Information Axiom Hypothesis




Derived Results (theorems following from axioms):

Result Content Derived From
Theorem VI | Holographic Bound S < A/(4/%) Axiom I + GSL
Theorem SDC | Semiclassical Duality Correspondence | Axioms I + II

The primitive axioms are logically independent: each can be violated while the others hold,
as we demonstrate through explicit countermodels in Appendix A. Together with the postulates,

they provide a complete foundation for the Quantum-Geometric Duality framework.

Remark 2.3 (Minimal Formulation). A more economical formulation is possible. Axioms I
and I can be combined into a single “Generalized Entropy Conservation” axiom stating that
Sgen = A/(40%) + Sext is conserved. The Observer-Dependent Horizon Principle (V) can then be
derived as a theorem rather than postulated independently. This minimal 3-axiom formulation
achieves greater logical economy at the cost of some pedagogical clarity. We present the expanded
structure here because it makes the physical content of each principle more transparent, but
readers should be aware that the foundational content can be compressed further.

3 Entropic Dynamics

The Entropic Action Principle (Axiom III) provides a unified variational formulation for coupled
matter-geometry systems. In this section, we extremize the action to derive the field equations
of the theory. The procedure follows standard variational methods, but the inclusion of the
entropic term leads to modifications of both the Einstein equations and the equilibrium condition
for matter.

We begin with the entropic action as stated in Eq. (3). The action depends on two independent
variables: the spacetime metric g,, and the matter density matrix p. Physical configurations
correspond to extrema of this action, obtained by requiring that variations with respect to both
variables vanish. We consider these variations in turn.

Varying the action with respect to the metric g,,,, yields the gravitational field equations. The
variation of the Einstein-Hilbert term produces the Einstein tensor G, through the standard
calculation. The variation of the matter Hamiltonian term produces the expectation value
of the stress-energy tensor. The entropic term contributes an additional piece proportional
to the metric times the von Neumann entropy. Collecting these contributions and requiring
05/6g,, = 0, we obtain the modified Einstein equations:

G =" () + =00 (10)

The first term on the right-hand side is the standard source term from matter: the expectation
value of the stress-energy tensor in the quantum state p. The second term is an entropic
correction: a contribution proportional to the von Neumann entropy Syn = —Tr(pln p) weighted
by the inverse temperature 3! = kgT. This entropic stress-energy has the form of a perfect
fluid with equation of state p = —pent, precisely the equation of state for a cosmological constant.

The physical interpretation of this result is significant. In thermal equilibrium, entropic
effects contribute to the effective stress-energy sourcing gravity. At low temperatures (large
B), the entropic contribution is suppressed. At high temperatures, it becomes increasingly



important. This provides a natural mechanism for entropy-driven gravitational effects in hot,
dense environments such as the early universe.

We now turn to the matter equations. Varying the action with respect to the density matrix
p and requiring 65/dp = 0 yields the equilibrium condition for matter:

e—BH[g]
Zlg

p= (11)

where Z[g] = Tr(e*/gﬁ 91} is the partition function and H[g] is the matter Hamiltonian in the
background geometry g,,,. This is the Gibbs thermal state at temperature 7' = 1/(kpf3). The
matter system equilibrates to a thermal distribution determined by the local temperature and
the Hamiltonian.

The coupled equations (10) and (11) must be solved self-consistently. The geometry g,
enters the matter Hamiltonian H|g], which determines the equilibrium state p. The state p then
sources the geometry through the stress-energy tensor. Finding a solution requires iterating
until convergence, as we discuss in Appendix C. In the weak-field regime, the self-consistency
map is a contraction, guaranteeing existence and uniqueness of solutions.

A natural question arises: what determines the temperature f~! appearing in the action? In
ordinary thermodynamics, temperature is determined by the environment—a heat bath with
which the system is in contact. In the present context, however, the system under consideration
includes gravity, and there may be no external heat bath. The resolution comes from the
Bisognano-Wichmann theorem [32], which establishes that the vacuum state of a quantum field
theory, when restricted to a Rindler wedge (the region accessible to a uniformly accelerating
observer), is a thermal state at the Unruh temperature.

The Unruh temperature is given by:

_ ha
- 2nckp

(12)

where a is the proper acceleration. This remarkable result connects acceleration, temperature,
and quantum mechanics: an accelerating observer perceives the quantum vacuum as a thermal
bath. The temperature is determined not by an external environment but by the observer’s
acceleration and, more generally, by the entanglement structure of the quantum state across the
observer’s horizon.

Within the Quantum-Geometric Duality framework, the Unruh temperature is not merely an
observed effect but a fundamental ingredient. The inverse temperature § in the entropic action
is determined by the local acceleration through Eq. (12). In a general curved spacetime, the
local temperature varies according to the Tolman relation, which ensures thermal equilibrium in
the presence of gravitational redshift. The temperature appearing in Eq. (3) is thus not a free
parameter but is fixed by the entanglement structure of the quantum fields and the geometry of
spacetime.

This derivation of temperature from entanglement has profound implications. It suggests
that thermodynamic properties of gravitating systems are not merely analogies but arise from
the quantum information-theoretic structure of spacetime. Black hole thermodynamics, with its
temperature determined by surface gravity, becomes a special case of this more general principle.

10



The entropic dynamics of Axiom III thus connects quantum information, thermodynamics, and
gravity in a unified framework.

4 Scale-Dependent Unification

The Scale-Dependent Unification axiom (Axiom IV) asserts that quantum and geometric de-
scriptions interpolate smoothly as a function of the length scale. This interpolation has concrete
physical consequences: the existence of a minimum measurable length, and modified dispersion
relations for particles propagating through Planck-scale structured spacetime. In this section,
we derive these consequences and discuss their experimental signatures.

The fundamental insight underlying these results is that position and momentum measure-
ments cannot simultaneously achieve arbitrary precision when gravitational effects are included.
The standard Heisenberg uncertainty principle, Az - Ap > h/2, constrains measurements of
position and momentum but places no lower bound on position uncertainty alone—in principle,
arbitrarily precise position measurements are possible if one accepts correspondingly large
momentum uncertainty. Gravity changes this picture. Attempting to localize a particle to very
small scales requires concentrating energy in a small region; at some point, the energy density
becomes sufficient to form a black hole, and the position measurement becomes meaningless.
This heuristic argument suggests that there exists a minimum length scale below which spatial
localization is impossible.

To make this precise, we combine the quantum uncertainty principle with gravitational
considerations. The generalized uncertainty principle (GUP) that emerges from this combination
has the form:

h BGAp
Az >
TZoap T 2

(13)

where 3 is a dimensionless parameter of order unity. The first term is the standard quantum
contribution, dominant at low momenta. The second term is the gravitational contribution,
dominant at high momenta. Together, they imply that position uncertainty cannot be made
arbitrarily small.

To find the minimum uncertainty, we minimize Ax with respect to Ap. Setting d(Ax)/d(Ap) =
0 yields Apopt = /A3 /(BG) = h/(v/Blp), where £p = \/Gh/c3 is the Planck length. Substitut-
ing back, we obtain the minimum position uncertainty:

Apin = /2B p ~ (144 0.5) lp ~ (2.3 +0.8) x 1072 m (14)

where we have used § = 2 with an estimated range of 1-4. The minimum length is of order the
Planck length, as expected on dimensional grounds, but the precise coefficient depends on the
details of the gravitational contribution to uncertainty.

This result has a striking interpretation: spacetime has an effective minimum resolution at
the Planck scale. No measurement procedure, however ingenious, can localize an object to better
than Planck precision. This is not merely an experimental limitation but a fundamental property
of nature reflecting the interplay between quantum mechanics and gravity. The minimum
length is sometimes interpreted as evidence for discrete spacetime structure, though the present
framework is agnostic on this point—the minimum length emerges from the uncertainty principle

rather than from explicit discreteness.

11



We now turn to the consequences for particle propagation. The GUP implies a modification
of the standard commutation relation between position and momentum. In ordinary quantum
mechanics, [2,p] = ih. The GUP is consistent with the modified commutator:

(5,5 = i (1 ¥ /3%2) (15)

h2

The correction term becomes significant only when the momentum approaches the Planck scale,
p h/ l P

This modified commutation relation has consequences for the dispersion relation of particles.
The standard relativistic dispersion relation E? = p?c? + m2c* follows from Lorentz invariance.
Planck-scale modifications of the commutation relation lead to corresponding modifications of

the dispersion relation. Working to leading order in the correction, we obtain:

2£2
E? = p?c? (1 +a? P) +m?2ct (16)

h2

where o = 8 ~ O(1). The correction is suppressed by (pfp/h)?, making it negligible for ordinary
particles but potentially detectable for ultra-high-energy photons.

For massless particles such as photons, the modified dispersion relation implies an energy-
dependent group velocity. Taking the derivative v = dE/dp and working to leading order, we

find:
E2
v-c(l— ]a]E]%> (17)

where Ep = \/hc5 /G =~ 1.22x10'Y GeV is the Planck energy and we have adopted the subluminal
convention (« > 0, corresponding to v < ¢) consistent with observational constraints. Higher-

energy photons travel slightly slower than lower-energy photons. The effect is minuscule—even

02%—but it accumulates over

for GeV photons, the velocity differs from ¢ by only one part in 1
cosmological distances.

This velocity difference leads to a measurable time delay between photons of different energies
emitted simultaneously from the same source. Consider two photons with energies £ and FEs
emitted from a source at distance L. The higher-energy photon travels more slowly, arriving

later than the lower-energy photon. The time delay is:

E?—FE2 L
P

For a gamma-ray burst at cosmological distance (L ~ 10%® m) with GeV photons (E ~ 10° eV),
this predicts a time delay of order At ~ 0.2 s, potentially observable with current instruments.

The E? scaling of the dispersion correction is a distinctive signature of the framework.
Alternative approaches to quantum gravity modifications predict different scalings: some loop
quantum gravity scenarios predict E! corrections, while other effective theories predict E®
or higher. The observed scaling, if measured, would therefore discriminate between different
theoretical approaches. Current observations from gamma-ray bursts have not detected significant
time delays, placing bounds |a| < 1 for E? corrections [20]. These bounds are consistent with

12



the framework’s predictions and motivate continued observations of high-energy astrophysical

sources.

5 Observer-Dependent Horizons

The Observer-Dependent Horizon Principle (Axiom V) establishes an equivalence between
quantum uncertainties and gravitational horizons. This equivalence has two major consequences
that we develop in this section: a derivation of the generalized uncertainty principle from first
principles, and a prediction of vacuum birefringence arising from non-commutative spacetime
structure at the Planck scale.

The starting point is the equivalence stated in Eq. (6): the quantum uncertainty relation
AFE - At > h/2 is physically equivalent to the gravitational relation a - Az > ¢?/2, where a is
proper acceleration. To understand this equivalence, consider an observer undergoing uniform
acceleration a. According to the Unruh effect, such an observer perceives the quantum vacuum
as a thermal bath at temperature T' = ha/(2mckp). The observer also has a Rindler horizon at
proper distance dy = ¢/a behind them—a surface from beyond which no signal can reach the
observer. The gravitational uncertainty a - Az > ¢?/2 can be interpreted as stating that the
observer cannot probe distances closer than half the horizon distance.

The connection to quantum uncertainty proceeds through dimensional analysis. Using the
Unruh temperature to relate acceleration to energy (kg1 = ha/(2mc), so a = 2nckpT/h) and
the relation AE ~ kgT, the gravitational relation a - Az > ¢?/2 becomes AFE - Az > he/(47).
With the substitution At ~ Ax/c, this recovers the form of the quantum uncertainty principle.
The numerical factor differs by 7 from the standard quantum relation, reflecting the approximate
nature of the dimensional argument; a more careful treatment preserves the correct coefficient.

The Observer-Dependent Horizon Principle, combined with the modified commutation
relation Eq. (15), provides an independent route to the generalized uncertainty principle. The
derivation follows from the Robertson uncertainty relation, which states that for any two
observables A and B, the product of their uncertainties satisfies AA - AB > [([A, B])|/2.
Applying this to position and momentum with the modified commutator yields:

h (p (%)
A$-Ap22<1+6 12 ) (19)
For a minimum-uncertainty state, (p?) ~ (Ap)?, giving the GUP in the form already stated
as Eq. (13). This derivation shows that the GUP is not merely a heuristic but follows from
the modified algebraic structure implied by scale-dependent unification and observer-dependent
horizons.

We now turn to a more dramatic consequence of Planck-scale physics: vacuum birefringence.
The modified commutation relation between position and momentum suggests a more general
non-commutativity of spacetime coordinates themselves. In theories where spacetime structure
is affected by quantum gravity, position operators may fail to commute:

(24,87 =0, 0" ~ (HOM (20)

where ©"" is a dimensionless antisymmetric tensor characterizing the non-commutativity. The
magnitude of the non-commutativity is set by the Planck area E%,, as expected on dimensional
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grounds.

Non-commutative spacetime breaks Lorentz invariance in a specific way. The tensor ©*"
defines preferred directions in spacetime, leading to anisotropic propagation of light. In par-
ticular, left-handed and right-handed circularly polarized photons couple differently to the
non-commutative structure and therefore propagate at different speeds. This phenomenon is
vacuum birefringence: the vacuum itself acts as a birefringent medium for light.

The physical picture is the following. In ordinary electromagnetism, Maxwell’s equations
treat left and right circular polarizations identically. Non-commutative spacetime introduces
corrections to Maxwell’s equations that depend on the photon helicity. The corrections are
suppressed by powers of E/Ep, where E is the photon energy and Ep is the Planck energy, but
they accumulate over large distances. A photon travelling through non-commutative spacetime
therefore experiences a rotation of its polarization plane, with the rotation angle depending on
energy and distance.

The scaling of this effect with energy is determined by the structure of the non-commutative
corrections. In the framework presented here, dimensional analysis and symmetry considerations
lead to a rotation angle scaling as E3:

(21)

EN® L
aomon() 5

where A¢ is the polarization rotation angle, L is the propagation distance, F is the photon energy,
and |An| ~ O(1) is a dimensionless coefficient depending on the details of the non-commutative
structure. The E? scaling arises because the leading E' and E? corrections are forbidden by
symmetry considerations in the present framework.

To estimate the observable effect, consider gamma-ray bursts (GRBs) at cosmological
distances. A GRB at redshift z ~ 2-3 corresponds to a comoving distance of order L ~ 1026
m, or approximately 10! Planck lengths. For photons with energy E ~ 10 MeV, the ratio

E/Ep ~ 10722, Combining these factors:

A¢ ~5x 1073 rad ~ 0.3° (22)

This is a small but potentially measurable effect. GRB polarimetry has achieved sensitivity at
the few-degree level, and next-generation instruments may reach the precision needed to detect
or constrain effects at the 0.3° level.

The E? scaling is a distinctive signature of the framework. Alternative approaches to
Lorentz-violating physics predict different scalings: the Myers-Pospelov effective theory predicts
E? birefringence, while the Standard Model Extension (SME) includes operators leading to E!
and E? effects. Observational detection of the scaling would therefore discriminate between
theoretical approaches. Current GRB polarization observations have not detected significant
birefringence, but the limits are not yet stringent enough to constrain E3 effects at the level
predicted here [30]. Continued observations with instruments such as IXPE [29] and future
dedicated polarimeters will improve these constraints.

The absence of detected birefringence to date is consistent with the framework’s predictions,
which place the effect at the edge of current observational capabilities. A positive detection
would be a dramatic confirmation of Planck-scale physics; continued non-detection would place
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increasingly stringent bounds on the coeflicient An and potentially falsify certain ranges of
parameters. Either outcome would provide valuable information about the structure of spacetime

at the smallest scales.

6 Testable Predictions

A theoretical framework is only as valuable as its contact with experiment. The Quantum-
Geometric Duality framework makes specific, quantitative predictions across a range of physical
scales, from laboratory optomechanics to cosmological observations. In this section, we summarize
the testable predictions, establish falsification criteria, and identify the distinctive signatures
that would distinguish this framework from alternatives.

The predictions fall into three categories: laboratory-scale effects accessible to near-term
experiments, astrophysical signatures observable with current or planned instruments, and
cosmological effects requiring precision surveys. Each prediction follows from specific axioms
of the framework, establishing a clear logical connection between theoretical principles and
empirical tests.

The complete set of predictions is summarized in the following table, which lists the predicted
effect, the mathematical formula, the axioms from which it derives, and the type of experiment
capable of testing it.

Prediction Formula Source Test

Grav. decoherence | T = hd/(GM?) Postulate GIA Optomechanics
Dark energy p=aH??/G Axiom I 4+ GSL (Paper II) | DESI, Euclid
Min. length AZmin ~ V20p Axiom IV GUP bounds
Mod. dispersion E? scaling Axiom IV GRB timing
GUP Eq. (13) Postulate V Interferometry
Entropy correction | Eq. (10) Axiom IIT Strong gravity
Birefringence E3 scaling (conjectured) | Axiom IV (if confirmed) GRB polarimetry

The gravitational decoherence prediction, developed in detail in Paper I, is the most accessible
to near-term experiment. For a particle of mass M in a spatial superposition with separation d,
the decoherence time is Tqec = hd/(GM?). A 1 ug particle separated by 1 mm has a predicted
decoherence time of approximately 1.6 ns. Levitated optomechanics experiments are approaching
the regime where this effect could be observed, and several groups are actively pursuing tests.
Detection of decoherence at the predicted rate would confirm both the Entanglement-Geometry
Correspondence (Axiom II) and the Gravitational Information Axiom; non-detection at the
predicted rate would falsify the G! scaling central to the framework.

The holographic dark energy prediction, developed in Paper II, makes contact with cosmo-
logical observations. The prediction ppg = aH?c?/G with a ~ 0.082 implies a dark energy
equation of state w = —1 exactly, with no time evolution. Current observations are consistent
with w = —1 but have uncertainties of order 5%. Upcoming surveys including DESI and Euclid
will measure w to percent-level precision, providing a stringent test. Any statistically significant
detection of w # —1 would falsify the holographic dark energy mechanism as formulated.

The Planck-scale predictions—minimum length, modified dispersion, and vacuum birefringence—

are the most challenging to test but also the most distinctive. These predictions follow from
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the scale-dependent unification (Axiom IV) and observer-dependent horizons (Axiom V) that
distinguish this framework from others. The E? scaling of dispersion modifications and E>
scaling of birefringence are specific predictions that can be compared to alternatives.

For experimental tests to be decisive, clear falsification criteria must be established. The
framework makes specific quantitative predictions, and sufficiently precise measurements can
rule out these predictions. The following table summarizes the falsification conditions for each

prediction.
Prediction Falsified if Axioms tested
Tdec = hd/(GM?) No decoherence at G*' rate | IT + GIA
w = —1 (exact) w# —latany z by >30c |1, VI
Azpin = V2Up B <0.1orB>10 IV, V
E? dispersion scaling | o < 0.01 from GRB timing | IV, V
E3 birefringence Achromatic polarization v

Several features of these predictions would distinguish Quantum-Geometric Duality from
alternative approaches to quantum gravity. First, the framework predicts a specific correlation
between independently measurable parameters: the coefficient a appearing in the modified
dispersion relation should equal the coefficient § appearing in the generalized uncertainty
principle, since both arise from the same modified commutation relation. Verification of this
equality would provide strong evidence for the unified origin of these effects.

Second, the energy scaling of vacuum birefringence provides a distinctive signature. The
framework predicts E? scaling, while the Myers-Pospelov effective theory predicts E? and the
Standard Model Extension includes operators with E! and E? scaling. Measurement of the
scaling exponent from GRB polarimetry would discriminate between these approaches. If
birefringence is detected with E! or E? scaling, the present framework would be disfavored;
detection of E? scaling would support it.

Third, the precise form of the gravitational decoherence rate, with its G! rather than G2
scaling, distinguishes the framework from perturbative approaches. Standard perturbative
quantum field theory calculations in curved spacetime give gravitational corrections scaling as
G?, since they involve graviton exchange diagrams that contribute at order G to amplitudes and
hence G? to probabilities. The G scaling predicted here reflects the non-perturbative nature of
the Entanglement-Geometry Correspondence. Observational determination of the scaling would
be decisive for the framework.

7 Connection to Papers I and II

The Quantum-Geometric Duality framework developed in this paper provides the axiomatic
foundation for two companion papers that apply the framework to specific physical phenomena.
Paper I addresses gravitational decoherence at laboratory scales, while Paper II addresses holo-
graphic dark energy at cosmological scales. The present section clarifies the logical relationships
among the three papers and demonstrates how the framework unifies quantum-gravitational
effects across an extraordinary range of scales.

The three papers form a coherent theoretical structure, summarized in the following table.
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Paper Focus Scale Key Prediction

I Gravitational decoherence | pm-mm | 7 = hd/(GM?)

1I Holographic dark energy Gpc ppE = aH%c? /G

III (this paper) | Axiomatic framework £p—Gpc | GUP, min. length, birefringence

Paper I [25] applies the Entanglement-Geometry Correspondence (Axiom II) to the problem
of gravitational decoherence. The central question is: why do massive objects not remain in
macroscopic superpositions? The conventional answer invokes environmental decoherence—
interaction with photons, air molecules, and so forth. But even in perfect isolation, gravity may
cause decoherence. The Didsi-Penrose hypothesis proposes that a mass in spatial superposi-
tion decoheres because the gravitational field cannot simultaneously be in two incompatible
configurations; the superposition must resolve.

Paper I makes this precise within the framework. The Entanglement-Geometry Correspon-
dence implies that a matter state in superposition becomes entangled with geometric degrees of
freedom, as expressed in the Semiclassical Duality Correspondence (Eq. 8). When an observer
measures only the matter degrees of freedom, tracing over the inaccessible geometry, the matter
state appears to have decohered. The decoherence rate is determined by the Gravitational
Information Axiom: information transfers from matter to geometry at a rate set by the gravita-
tional self-energy, saturating the Margolus-Levitin bound. The resulting decoherence time is
Taec = hd/(GM?), where M is the mass and d is the superposition separation.

Paper II [26] applies Information Conservation (Axiom I) and the Holographic Bound
(Theorem VI) to cosmology. The central question is: what is the nature of dark energy, the
mysterious component that drives the accelerating expansion of the universe? Observations
indicate that dark energy comprises roughly 70% of the cosmic energy density and has an
equation of state very close to w = —1, mimicking a cosmological constant. But the naive
estimate for a cosmological constant from quantum field theory exceeds observations by some
120 orders of magnitude—the notorious cosmological constant problem.

Paper II proposes that dark energy is holographic in origin. The Holographic Bound limits
the maximum entropy in any region to A/ (4@3), where A is the boundary area. Applied to
the cosmological horizon, this constrains the vacuum energy density. Information Conservation
then determines how this bound is saturated dynamically. The result is a dark energy density
ppE = ac?H? /G with o ~ 0.082, remarkably close to the observed value. The prediction w = —1
exactly, with no time evolution, will be tested by upcoming surveys.

The present paper provides the axiomatic foundation for both results and develops additional
predictions that emerge from the framework but are not the primary focus of either companion
paper. The generalized uncertainty principle, minimum measurable length, modified dispersion
relations, and vacuum birefringence all follow from the axioms developed here but require detailed
treatment beyond the scope of Papers I and II.

The remarkable feature of this structure is the unification it achieves across scales. The
framework makes predictions at the Planck scale (£p ~ 1073% m, through the minimum length
and GUP), at laboratory scales (um-mm, through gravitational decoherence), at astrophysical
scales (through modified dispersion and birefringence), and at cosmological scales (Gpc ~ 1026
m, through holographic dark energy). This spans approximately sixty orders of magnitude in
length scale, from the smallest to the largest distances accessible to observation.

That a single set of axioms can generate consistent predictions across such a vast range is not
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obvious a priori. The consistency relies on the scale-dependent unification expressed in Axiom IV,
which ensures smooth interpolation between quantum and geometric descriptions. The framework
does not predict different physics at different scales; rather, it predicts that the same underlying
physics manifests differently depending on the observational regime. Gravitational decoherence
is the dominant effect at laboratory scales because matter-geometry entanglement accumulates
rapidly for massive objects. Holographic bounds dominate at cosmological scales because horizon
areas become cosmologically significant. Planck-scale effects dominate at high energies because
the modified commutation relations become non-negligible. But all these phenomena emerge
from the same six axioms and the same Semiclassical Duality Correspondence.

This unification is the central achievement of the framework. Quantum mechanics and
general relativity, often viewed as irreconcilable, appear in this framework as complementary
descriptions of a single reality. The apparent conflict arises from applying each theory outside
its domain of validity; the axioms of Quantum-Geometric Duality delineate these domains and
provide the interpolation between them. The experimental tests described in Section 6 will
determine whether this unification corresponds to physical reality.

8 Discussion

The Quantum-Geometric Duality framework presented in this paper offers a unified axiomatic
foundation for quantum-gravitational phenomena. Before concluding, we must honestly assess
the framework’s limitations, clarify its relationship to alternative approaches, and identify the
most promising avenues for experimental test.

The framework has several important limitations that must be acknowledged. First, while
the axioms determine the scaling behavior of various effects, they do not uniquely determine the
numerical coefficients. The GUP parameter [ is predicted to be of order unity, with our best
estimate 8 = 2 and a range 1-4, but this represents theoretical uncertainty rather than precise
prediction. Similarly, the sign of the dispersion modification coefficient o (determining whether
Planck-scale effects make photons superluminal or subluminal) is not fixed by the axioms. The
framework predicts the form of the corrections but leaves some coefficients to be determined by
experiment or by a more fundamental theory.

Second, the Entanglement-Geometry Correspondence (Axiom II) generalizes results es-
tablished in the AdS/CFT correspondence to arbitrary spacetimes. This generalization is
well-motivated by physical arguments—the Ryu-Takayanagi formula and its extensions suggest
a deep connection between entanglement and geometry that should not depend on the specific
features of anti-de Sitter space. Nevertheless, rigorous derivation of the correspondence for
general spacetimes remains an open problem. The axiom should be regarded as a conjecture
supported by strong evidence, not as a proven theorem.

Third, the framework provides no ultraviolet completion. The axioms describe physics in
the semiclassical regime, where matter is quantum mechanical but spacetime geometry can be
treated classically or semiclassically. At the Planck scale itself, where quantum fluctuations of
geometry become large, the framework breaks down. A complete theory of quantum gravity
would describe this regime; the present framework is an effective description valid below the
Planck scale. This is not a defect unique to our approach—it is shared by essentially all current
approaches to quantum gravity phenomenology.

Fourth, the Born rule—the prescription that measurement probabilities equal the squared
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modulus of quantum amplitudes—is assumed throughout this work but not derived from the
axioms. This is a foundational gap shared with essentially all formulations of quantum mechanics.
While decoherence explains why interference terms vanish and classical probabilities emerge,
it does not by itself explain why those probabilities take the specific values given by the Born
rule. Various approaches have been proposed to derive the Born rule from other principles
(decision-theoretic arguments, environment-assisted invariance, typicality arguments), but none
has achieved universal acceptance. Within Quantum-Geometric Duality, the Born rule enters
as an additional assumption needed to extract predictions from the quantum state. A deeper
theory might derive it from informational principles compatible with the axioms, but at present
this remains an open problem in the foundations of quantum mechanics.

Fifth, the G' scaling of gravitational decoherence deserves special comment. The Gravita-
tional Information Axiom, which produces this scaling through saturation of the Margolus-Levitin
bound, has strong physical motivation from multiple perspectives: the Didsi-Penrose hypothesis,
consistency with the Entanglement-Geometry Correspondence, and the information-theoretic
argument that gravity represents a fundamental channel for quantum information transfer. How-
ever, standard perturbative quantum field theory calculations give G? scaling for gravitational
effects, since graviton exchange diagrams contribute at order G to amplitudes and hence G2
to probabilities. The discrepancy reflects the non-perturbative nature of the Entanglement-
Geometry Correspondence. Ultimately, this is an empirical question: experiments capable
of measuring gravitational decoherence will determine whether the scaling is G' or G?. The
framework makes a definite prediction, and the prediction is falsifiable.

Sixth, some of the framework’s predictions—gravitational decoherence, holographic dark
energy—also appear in prior work. Diési [23] and Penrose [22] proposed gravitational decoherence
decades ago; Li and others developed holographic dark energy models. The contribution of the
present framework is not to discover these effects but to unify them within a common axiomatic
structure and to derive additional predictions (GUP, modified dispersion, birefringence) that
emerge from the same principles. The value lies in the unification and the additional predictions,
not in the claim of unique discovery.

The framework should be understood in relation to other approaches to quantum gravity.
String theory, loop quantum gravity, asymptotic safety, and causal set theory each address the
quantum gravity problem from different starting points. String theory replaces point particles
with extended objects, naturally incorporating gravity and avoiding ultraviolet divergences. Loop
quantum gravity quantizes spacetime geometry directly, predicting discrete spectra for area and
volume operators. Asymptotic safety posits that gravity becomes well-defined at high energies
through a nontrivial ultraviolet fixed point. Causal sets propose that spacetime is fundamentally
discrete, with continuous geometry emerging only at large scales.

Quantum-Geometric Duality is not a replacement for these approaches but a complementary
perspective. The framework is phenomenological: it takes quantum-gravitational effects as given
and systematizes their relationships through axioms. A more fundamental theory—perhaps
one of the approaches mentioned above—might derive our axioms from deeper principles. The
relationship would be analogous to that between thermodynamics and statistical mechanics:
thermodynamics provides reliable phenomenological relationships, while statistical mechanics
explains why those relationships hold. The axioms of Quantum-Geometric Duality may eventually
be derived from a microscopic theory of quantum gravity.

The most important question is experimental. The framework makes specific predictions
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that can be tested with current or near-future technology. Gravitational decoherence at the
predicted rate could be observed in levitated optomechanics experiments within the next decade.
Holographic dark energy with w = —1 exactly will be tested by DESI, Euclid, and other
surveys. Modified dispersion relations constrained by gamma-ray burst observations. Vacuum
birefringence potentially detectable through GRB polarimetry. The coefficient correlation o = 3
testable if both coefficients can be measured independently.

The decisive experiments are those that test the G' versus G? scaling of gravitational
decoherence. If decoherence is observed at the predicted G! rate, the framework receives
strong confirmation; if decoherence is observed at a G? rate or not at all, the Gravitational
Information Axiom must be revised or abandoned. Either outcome would significantly advance
our understanding of the quantum-gravity interface.

In conclusion, the Quantum-Geometric Duality framework establishes matter-geometry
entanglement in the semiclassical regime as a fundamental physical phenomenon. Six axioms—
Information Conservation, Entanglement-Geometry Correspondence, Entropic Action Principle,
Scale-Dependent Unification, Observer-Dependent Horizons, and Holographic Bound—yield
predictions spanning laboratory, astrophysical, and cosmological scales. The framework unifies
gravitational decoherence and holographic dark energy within a common structure and predicts
additional effects including the generalized uncertainty principle, minimum measurable length,
modified dispersion relations, and vacuum birefringence. The decisive experimental tests are:
gravitational decoherence in levitated optomechanics, w = —1 from precision cosmological
surveys, £ birefringence scaling from GRB polarimetry, and coefficient correlation o = 3 from
independent measurements. These tests will determine whether Quantum-Geometric Duality

provides an accurate description of nature at the quantum-gravity frontier.
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Appendices

A Logical Structure of the Axiom System

For an axiomatic system to be well-founded, the axioms must be logically independent: no axiom
should be derivable from the others. If an axiom could be derived, it would not be an axiom but
a theorem, and its inclusion as a primitive statement would be redundant. We demonstrate the
independence of our axioms by constructing countermodels—theoretical frameworks that satisfy
five of the six axioms while violating the sixth.

The existence of such countermodels proves independence. If Axiom n were derivable from
the other five, then any model satisfying those five would necessarily satisfy Axiom n as well.
The countermodel satisfying five but not n is therefore a proof by contradiction that Axiom n is
independent.

We present the countermodels in summary form. Full construction of each model requires
specification of the mathematical structures involved; here we indicate the key physical features
that demonstrate the violation of each axiom.

Consider first a countermodel violating Axiom I (Information Conservation). Semiclassical
gravity as formulated before the resolution of the information paradox provides such a model.
In this framework, matter falling into a black hole is absorbed, and the black hole subsequently
evaporates via Hawking radiation. The radiation is thermal—it carries no information about
the matter that formed the black hole. Information is therefore lost: the von Neumann entropy
of the radiation exceeds that of the infalling matter, and there is no compensating decrease in
geometric entropy once the black hole has evaporated completely. This model satisfies the other
axioms (in appropriate limits) but violates Information Conservation.

For Axiom IT (Entanglement-Geometry Correspondence), consider JT gravity with logarithmic
corrections. Jackiw-Teitelboim gravity is a two-dimensional model of dilaton gravity that has
been extensively studied as a toy model for quantum gravity. In certain formulations, the
entropy-area relation receives logarithmic corrections that violate the simple proportionality
S = A/(4¢%). The generalized entropy includes corrections of the form S ~ A/(4¢%)+cln A+.. .,
where ¢ is a model-dependent constant. This model can be constructed to satisfy the other
axioms but violates the specific form of the Entanglement-Geometry Correspondence.

For Axiom IIT (Entropic Action Principle), consider ADM Hamiltonian gravity restricted
to pure states. The ADM formalism describes gravity in terms of a Hamiltonian evolution of
spatial geometries. When the matter sector is restricted to pure quantum states, there is no
von Neumann entropy (Syn = 0 for pure states), and the entropic term in the action vanishes
identically. The dynamics reduces to standard Hamiltonian gravity without entropic structure.
This model satisfies Information Conservation and the other axioms but violates the Entropic
Action Principle as a non-trivial constraint.

For Axiom IV (Scale-Dependent Unification), consider causal set quantum gravity. Causal
sets propose that spacetime is fundamentally discrete at the Planck scale, with continuous
geometry emerging only as an approximation at larger scales. The discreteness is sharp, not
smooth: there is no continuous interpolation between quantum and geometric descriptions.
Instead, there is a fundamental discreteness scale below which the usual notions of spacetime
geometry do not apply. This model can satisfy the other axioms but violates the smooth
interpolation required by Scale-Dependent Unification.
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For Axiom V (Observer-Dependent Horizon Principle), consider doubly special relativity
(DSR) with modified dispersion relations. DSR modifies special relativity to include an invariant
energy scale (typically the Planck energy) in addition to the invariant velocity c¢. This leads to
modified dispersion relations of the form E? = p?c?>+m?2c*+ f(E, p; Ep), where f encodes Planck-
scale corrections. In some DSR formulations, the equivalence between quantum uncertainty and
gravitational horizon uncertainty is broken: the modified kinematics changes the relationship
between acceleration and horizon distance in ways incompatible with Axiom V. Such models
satisfy the other axioms but violate the Observer-Dependent Horizon Principle.

For Axiom VI (Holographic Information Bound), consider three-dimensional gravity coupled
to matter with volume-law entanglement. In three spacetime dimensions, gravity has no local
degrees of freedom, and the theory is topological. When coupled to matter fields whose ground
state has volume-law entanglement (where entropy scales with volume rather than area), the
total entropy can exceed the holographic bound S < A/(4¢%). Such models are artificial but
mathematically consistent, and they demonstrate that the Holographic Bound is an independent
statement.

The countermodels are summarized in the following table.

Axiom | Countermodel Key Violation
1 Semiclassical gravity (pre-Page curve) Information lost in Hawking radiation
II JT gravity with log corrections S £ AJ(40%)
111 ADM Hamiltonian gravity (pure states) | No entropic structure
I\Y% Causal set quantum gravity Sharp discreteness, not smooth
v DSR with modified dispersion Unruh equivalence broken
VI 3D gravity + volume-law matter S o V,not S < AJ(40%)

These countermodels establish that each axiom contributes independent content to the
framework. Full formal proofs of independence would require precise mathematical formulation
of each axiom and construction of the countermodels in complete detail, which is beyond the
scope of the present paper. The countermodels presented here provide physical arguments for
independence that could be made rigorous with additional work.

B Mathematical Framework

The Semiclassical Duality Correspondence (Proposition 2.7) asserts that matter superpositions
produce entangled matter-geometry states. To make this correspondence precise, we must specify
the mathematical structures involved: the Hilbert space for geometric degrees of freedom, the
definition of gravitational coherent states, the map between matter states and their associated
geometries, and the regime of validity for the semiclassical approximation. This appendix
develops these structures.

The Hilbert space for linearized quantum gravity is constructed as a Fock space over graviton
modes. In the linearized approximation, where the metric is written as g, = 1., + hy, with
|huw| < 1, the gravitational field h,, can be decomposed into plane-wave modes, each of which
is a quantum harmonic oscillator. The total Hilbert space is the tensor product of the Hilbert
spaces for each mode, which can be organized as a Fock space.
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Definition B.1 (Semiclassical Geometric Hilbert Space). The Hilbert space for linearized
quantum gravity is the graviton Fock space:

ngom = @ Hn (23)
n=0

where H,, is the n-graviton subspace, constructed by applying n creation operators to the vacuum
state. The vacuum state |0) corresponds to flat Minkowski space, and states with nonzero
graviton number represent metric perturbations.

Classical gravitational fields correspond not to states with definite graviton number but to
coherent states—superpositions of all graviton numbers that minimize uncertainty and whose
expectation values for the metric perturbation are the classical field values. These states are the
natural quantum counterparts of classical solutions.

Definition B.2 (Gravitational Coherent State). A coherent state |a) in the gravitational Fock
space is an eigenstate of all annihilation operators: ax )|a) = ax x|a) for all wavevector k and
polarization A\. The complex numbers ay ) specify the coherent state completely. Coherent
states are minimum-uncertainty states and satisfy (c|h, (z)|e) = (), where R, (z) is the
classical field configuration determined by the mode amplitudes ay ».

The Semiclassical Duality Correspondence requires a map from matter states to their
associated geometric states. This map is determined by the Einstein equations: given a matter
state with a definite stress-energy tensor, the corresponding geometry is the solution to the

linearized Einstein equations with that source.

Definition B.3 (Matter-Geometry Map). For a matter state |1,,) with stress-energy expectation
value (| Ty |[tn) = ;SZ), the corresponding geometric state is [¢() = |a(™), where |a(™)
is the gravitational coherent state whose expectation value (a(™ |k, |a(™) = h,(fﬁ) solves the
linearized Einstein equations sourced by T,SZ).

The linearized Einstein equations in harmonic gauge take the form DEW = —167GT,,/ ct,
where BW = hu, — %nwh is the trace-reversed perturbation. These equations can be solved by
Green’s function methods, giving the metric perturbation in terms of the stress-energy source.
The matter-geometry map is therefore well-defined and unique in the linearized regime.

The semiclassical approximation is valid under specific conditions. Outside these conditions,
quantum fluctuations of the geometry become large, and the linearized Fock space construction
breaks down. We enumerate the validity conditions.

Definition B.4 (Semiclassical Validity Regime). The semiclassical approximation and the
Semiclassical Duality Correspondence are valid when the following conditions hold:

(V1) Weak field: |h,,| < 1. The metric perturbation must be small compared to the background

metric, ensuring that linearization is a good approximation.

(V2) Small curvature: R - /(% < 1. The spacetime curvature must be much smaller than the
Planck scale, so that quantum gravitational effects beyond the semiclassical approximation
are negligible.

(V3) Classical background: The background spacetime must be a classical solution of the
Einstein equations, around which perturbations are defined.
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(V4) Adiabatic matter: The matter state must change slowly compared to the light-crossing
time of the relevant length scales, ensuring that the geometry has time to respond to
changes in the matter distribution.

These conditions are satisfied in all situations of experimental interest for gravitational
decoherence. Laboratory masses of micrograms to grams produce metric perturbations of
order h ~ GM/(rc*) ~ 1073% or smaller, well within the weak-field regime. The curvature is
correspondingly small. The background is flat Minkowski space to excellent approximation. And
laboratory timescales are much longer than light-crossing times for millimeter-scale separations.

The conditions break down in strong-gravity regimes (near black holes or in the early
universe), at very small scales (near the Planck length), or in situations with rapid matter
dynamics. In such cases, a more complete treatment of quantum gravity is required, beyond the
scope of the present framework.

C Self-Consistency

The Entropic Action Principle (Axiom III) yields coupled equations for the matter density
matrix p and the spacetime metric g,,,. The matter state depends on the geometry through the
Hamiltonian H [g], while the geometry depends on the matter state through the stress-energy
tensor (7] w)- A solution must satisfy both equations simultaneously—it must be self-consistent.
This appendix addresses the existence and uniqueness of such solutions.

The self-consistency problem can be formulated as a fixed-point equation. Define the self-
consistency map F as follows: starting from a metric g, compute the matter Hamiltonian H [,
then the equilibrium density matrix plg] = e—BHIg) /Z[g], then the stress-energy expectation
value <T#l,>[p], and finally the metric ¢’ solving the modified Einstein equations with this source.

A self-consistent solution is a fixed point: g = F(g).

Theorem C.1 (Existence of Self-Consistent Solutions). In the weak-field regime, the self-
consistency map F is a contraction on an appropriate function space. By the Banach fixed-point
theorem, there exists a unique fived point near flat space vacuum. Iterative methods converge

geometrically to this fized point.

Sketch of proof. In the weak-field regime, the metric is g = Mu + hyy with ||h]| < 1in a
suitable norm. The Hamiltonian H [g] depends smoothly on h, so the equilibrium state p[g]
and stress-energy (T w) also depend smoothly on h. The linearized Einstein equations give
h' as a bounded linear function of <TW>. For sufficiently weak fields, the overall map F has
Lipschitz constant less than unity, making it a contraction. The Banach fixed-point theorem
then guarantees existence and uniqueness, and the standard iterative scheme g,11 = F(gy)

converges geometrically to the fixed point. O

The weak-field result extends to other regimes through different methods. For static,
spherically symmetric configurations, the self-consistency equations reduce to ordinary differential
equations analogous to the Tolman-Oppenheimer-Volkoff (TOV) equations of stellar structure.
Standard existence theorems for ODEs guarantee solutions. For cosmological settings, the FLRW

symmetry reduces the equations to the Friedmann equations, which have well-known solutions.
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Regime Result Method

Weak field Existence and uniqueness | Banach fixed-point theorem
Static spherical | Explicit solution ODE theory (TOV equations)
Cosmological FLRW solutions Friedmann equations

The physical interpretation of these results is reassuring. The quantum-geometric coupling
introduced by the framework does not lead to pathologies such as non-existence of solutions or
instabilities. In all regimes of interest, self-consistent solutions exist. The weak-field uniqueness
result ensures that small perturbations lead to unique predictions, as required for the framework
to make testable claims. The existence of cosmological solutions confirms that the framework is
consistent with the large-scale structure of the universe.

The situation is less clear in strong-gravity regimes, where neither weak-field perturbation
theory nor high-symmetry reductions apply. Near black hole horizons or in the very early
universe, the semiclassical approximation itself may break down, and a more complete theory of
quantum gravity would be required. The self-consistency results presented here apply within
the regime of validity of the semiclassical framework.

One subtlety deserves mention. The entropic contribution to the Einstein equations (Eq. 10)
includes a term proportional to the von Neumann entropy Syn. For the thermal state p = e—BH /Z,
this entropy depends on the Hamiltonian and hence on the geometry. The self-consistency loop
therefore includes the entropy as an intermediate quantity. The fixed-point argument remains
valid because Syn[p[g]] depends smoothly on g in the weak-field regime.

In summary, the quantum-geometric coupling introduced by Axiom III is internally self-
consistent. Solutions exist in all physically relevant regimes, and in the weak-field regime they are
unique. The framework therefore provides a well-defined mathematical structure for analyzing
matter-geometry interactions.
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