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Abstract

We show that Modified Newtonian Dynamics (MOND) phenomenology emerges naturally
from the thermodynamics of de Sitter space within the framework of quantum-geometric
duality. The de Sitter cosmological horizon establishes a thermal bath at the Gibbons-
Hawking temperature TdS = ℏH0/(2πkB), which generates extensive (volume-law) entropy
in addition to the standard area-law contribution. When local entanglement equilibrium—
the principle that generalized entropy is stationary under allowed variations—fails at low
accelerations, the volume entropy becomes dynamically relevant, producing MOND-like
corrections to Newtonian gravity.

We demonstrate that the characteristic acceleration scale emerges as a0 = cH0/(2π) ≈
1.1×10−10 m/s2, matching observed MOND values within 10% with no adjustable parameters.
We establish clear criteria for regime separation: GR remains exact when ϵ = gN/a0 ≫ 1
(solar system, pulsars), while MOND corrections become significant when ϵ ≲ 1 (galaxy
outskirts). The volume entropy saturates the Bousso covariant entropy bound, resolving any
apparent conflict with holography.

We present Entanglement-Elastic Gravity (EEG), a covariant field theory that extends
this framework to relativistic regimes. The EEG action introduces an elastic displacement
field ψ encoding entanglement strain, yielding modified Einstein equations with an elastic
stress tensor. The theory is ghost-free, preserves gravitational wave speed c, and reduces to
the modified Poisson equation in the Newtonian limit. Predictions: Flat rotation curves,
Tully-Fisher relation v4 = GMa0, weak lensing slip |Φ − Ψ|/|Φ| ≈ 15% beyond 50 kpc, and
growth rate suppression ∆fσ8 ≈ −0.03 testable with Euclid and DESI.
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1 Introduction

Galaxy rotation curves present one of the most striking puzzles in modern physics. When
astronomers measure how fast stars orbit around galactic centers, they consistently find velocities
that remain nearly constant far beyond the visible edge of the galaxy, where Newtonian gravity
predicts they should fall off as the square root of distance. This discrepancy appears across
galaxies of all sizes and types, from dwarf spheroidals to giant ellipticals, always becoming
significant when the gravitational acceleration drops below a characteristic scale of approximately
1.2 × 10−10 m/s2—about ten billion times weaker than Earth’s surface gravity.

The standard explanation invokes dark matter: an invisible substance that surrounds galaxies
in extended halos, providing the additional gravitational pull needed to keep stars moving fast.
Dark matter models successfully reproduce many observations, but they require fine-tuning to
explain certain regularities in the data. Most notably, the baryonic Tully-Fisher relation shows
that the asymptotic rotation velocity v of a galaxy depends only on its visible (baryonic) mass
M according to v4 ∝ M , with remarkably little scatter. If dark matter halos had independent
properties from the visible galaxy, we would expect this relation to show much more variation.

Milgrom [3] proposed an alternative interpretation: perhaps gravity itself behaves differently
at very low accelerations. His Modified Newtonian Dynamics (MOND) hypothesis posits that
when the Newtonian gravitational acceleration gN = GM/r2 falls below a critical value a0,
the actual acceleration experienced by a test particle transitions to g ≈ √

gN · a0. This simple
modification, with a0 ≈ 1.2 × 10−10 m/s2, automatically explains flat rotation curves, the
Tully-Fisher relation, and numerous other galactic scaling relations [7, 8]. However, MOND has
traditionally lacked a theoretical foundation—the acceleration scale a0 must be fitted to data
rather than predicted from first principles.

The purpose of this paper is to provide that theoretical foundation. We show that the
MOND phenomenology emerges naturally from the thermodynamics of de Sitter space, with
the acceleration scale a0 = cH0/(2π) predicted directly from the Hubble constant. This is not
merely a numerical coincidence: it reflects a deep connection between cosmological horizons and
the information-theoretic structure of gravity.

Our starting point is Jacobson’s remarkable discovery [1] that Einstein’s equations can
be derived from thermodynamic principles. When one requires that the generalized entropy
Sgen = A/(4ℓ2P ) + Sbulk remains stationary under small variations of the spacetime geometry,
the Einstein equations follow as a consistency condition. This suggests that gravity is not
a fundamental force but an emergent phenomenon arising from the equilibrium of quantum
information distributed across spacetime.

Jacobson’s original derivation assumed flat spacetime at large distances. But our universe
is not flat—it is described by de Sitter space, with an accelerating expansion driven by dark
energy. The de Sitter geometry introduces a cosmological horizon at distance c/H0 from
any observer, beyond which events are causally disconnected. Like a black hole horizon,
this cosmological horizon has thermodynamic properties: it radiates at the Gibbons-Hawking
temperature TdS = ℏH0/(2πkB) and carries entropy proportional to its area.

The key insight of this paper is that the de Sitter horizon fundamentally changes the entropy
accounting. In flat spacetime, entropy obeys an area law: the maximum entropy in a region
scales with its boundary area. But in de Sitter space, the thermal bath at temperature TdS

contributes volume-law entropy Svol = sΛV throughout the interior. When a mass M is placed
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in this thermal bath, it “displaces” entropy ∆S = Mc2/TdS from the surrounding volume. If
the available volume entropy cannot accommodate this displacement, local thermodynamic
equilibrium fails, and the gravitational dynamics must change.

This failure of equilibrium occurs precisely when the Newtonian acceleration falls below
a0 = cH0/(2π). At higher accelerations, the local geometry can absorb the entropy displace-
ment through small curvature adjustments, and standard general relativity applies. At lower
accelerations, the entropy deficit spreads non-locally through the de Sitter volume, producing
the characteristic MOND behavior g ∝ √

gN . The transition is not put in by hand but emerges
from the competition between area-law and volume-law contributions to the generalized entropy.

We develop this argument in stages. Section 2 establishes the thermodynamic properties of
de Sitter space, including the Gibbons-Hawking temperature and the volume entropy density.
Section 3 demonstrates that the total volume entropy saturates the Bousso covariant entropy
bound, resolving any apparent conflict with holography. Section 4 derives the MOND acceleration
scale from entropy equilibrium and shows how the Tully-Fisher relation emerges automatically.
Section 5 provides the ϵ-expansion that quantifies when general relativity versus MOND applies,
showing that solar system tests are safely in the GR regime.

Having established the non-relativistic framework, we then present its covariant completion.
Section 6 develops Entanglement-Elastic Gravity (EEG), a fully relativistic field theory in which
an elastic displacement field ψ encodes the entropy strain caused by matter. The EEG action
yields modified Einstein equations with an elastic stress tensor that reduces to the MOND
Poisson equation in the Newtonian limit. The theory is ghost-free, preserves gravitational wave
propagation at speed c (consistent with GW170817), and provides a complete framework for
analyzing strong-field phenomena.

Section 7 presents observational predictions, including the weak lensing slip parameter
|Φ − Ψ|/|Φ| ≈ 15% beyond 50 kpc, growth rate suppression ∆fσ8 ≈ −0.03 at z = 0.8,
and anomalous acceleration in wide binary stars detectable with Gaia DR4/DR5. Section 8
summarizes our findings and discusses open problems.

Series context. This is Paper IV of the Quantum-Geometric Duality series. Paper A
develops gravitational decoherence from the same entropy principles; Paper B derives holo-
graphic dark energy; Paper C presents the complete axiomatic framework; Paper H establishes
information-theoretic bounds. Each paper is self-contained but cross-references the others for
extended discussion.

2 De Sitter Thermodynamics

The cosmological constant Λ is not merely a parameter in Einstein’s equations—it fundamentally
alters the causal structure of spacetime, creating a horizon that radiates like a black hole turned
inside out. This section establishes the thermodynamic properties of de Sitter space that will
underpin our derivation of MOND phenomenology.

2.1 The Static Patch and Cosmological Horizon

De Sitter space is the maximally symmetric solution to Einstein’s equations with positive
cosmological constant, Gµν + Λgµν = 0. Unlike Minkowski space, de Sitter has a characteristic
length scale set by Λ that determines how far any observer can see. In static coordinates centered
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on a freely falling observer, the metric takes the form

ds2 = −
(

1 − r2

R2
H

)
c2dt2 + dr2

1 − r2/R2
H

+ r2dΩ2, (1)

where the de Sitter radius is
RH =

√
3
Λ = c

H0
. (2)

The significance of RH becomes apparent from the metric: the coefficient gtt vanishes at
r = RH , and the coefficient grr diverges. This marks a coordinate horizon—not a singularity,
but a boundary beyond which events are causally disconnected from the central observer. Light
signals sent from r > RH can never reach r = 0, just as signals sent into a black hole can
never escape. For our universe with H0 ≈ 70 km/s/Mpc, the horizon lies at RH ≈ 14 billion
light-years, defining the edge of the observable universe.

The region r < RH is called the static patch because it admits a timelike Killing vector
∂/∂t. This symmetry allows us to define a conserved energy and construct a meaningful
thermodynamics. The static patch contains a finite proper volume VH = (4π/3)R3

H , bounded by
the cosmological horizon. Unlike the exterior of a black hole, where freely falling observers cross
the horizon inward, the de Sitter horizon is a future boundary—all observers eventually find
their signals redshifted into oblivion as they approach it.

2.2 The Gibbons-Hawking Temperature

Perhaps the most profound discovery in semiclassical gravity is that horizons radiate. Hawking
showed that black holes emit thermal radiation at a temperature inversely proportional to their
mass; Gibbons and Hawking [2] extended this result to cosmological horizons. The de Sitter
horizon bathes its interior in thermal radiation at temperature

TdS = ℏH0
2πkB

≈ 2.8 × 10−30 K. (3)

This extraordinarily low temperature—ten billion times colder than the cosmic microwave
background—might seem irrelevant to practical physics. But as we shall see, it sets the
acceleration scale below which gravitational dynamics fundamentally change.

The Gibbons-Hawking temperature can be derived by three independent methods, all yielding
the same result. The first method uses surface gravity: the quantity κ that measures the “strength”
of the horizon is defined geometrically by the Killing equation ∇µ(kνkν) = −2κkµ. For the de
Sitter metric, direct calculation gives κ = cH0, and the temperature follows from the universal
relation T = ℏκ/(2πckB).

The second method uses Euclidean continuation. Under the analytic continuation t → −iτ ,
the Lorentzian metric becomes Riemannian, but a conical singularity appears at r = RH unless τ
is periodic with a specific period. Requiring regularity uniquely fixes this period to be β = 2π/H0,
which corresponds to temperature T = ℏ/(2πkBβ) = ℏH0/(2πkB).

The third method appeals to the Unruh effect. A static observer at any radius r < RH must
accelerate to resist the cosmic expansion. As r → RH , this proper acceleration diverges, and the
Unruh radiation seen by the accelerating observer approaches the Gibbons-Hawking temperature
after accounting for gravitational redshift. That three completely different approaches—geometric,
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topological, and kinematic—yield the identical answer strongly suggests that TdS is a fundamental
property of de Sitter space.

2.3 The First Law and Horizon Entropy

The cosmological horizon is not merely a kinematic boundary but a genuine thermodynamic
system. Like a black hole, it carries entropy proportional to its area—an entropy that in our
universe reaches the staggering value SdS = AH/(4ℓ2P ) ≈ 10122 in natural units. This is the
largest entropy of any system in the observable universe, dwarfing even the combined entropy of
all black holes.

The thermodynamic nature of the horizon is expressed by the first law

dEdS = TdS dSdS , (4)

where EdS is the vacuum energy contained within the static patch. This equation states that
adding energy to the interior increases the horizon area, just as feeding a black hole makes
it grow. The cosmological horizon acts as a heat reservoir at temperature TdS, in thermal
equilibrium with the interior.

2.4 The Characteristic Energy and Acceleration Scales

What physical scale does the Gibbons-Hawking temperature set? Converting temperature to
energy gives

EdS = kBTdS = ℏH0
2π ≈ 3.6 × 10−52 J. (5)

This is an absurdly small energy—roughly the kinetic energy of a single atom moving at 10−12

meters per second. No laboratory experiment could ever detect individual quanta at this scale.
Yet when we ask what acceleration this energy corresponds to, something remarkable happens.

Using natural gravitational units defined by the Planck mass mP =
√
ℏc/G and Planck length

ℓP =
√
ℏG/c3, we find

a0 = EdS
mP ℓP

= cH0
2π ≈ 1.1 × 10−10 m/s2. (6)

This is the MOND acceleration scale, the value below which galaxy rotation curves deviate
from Newtonian predictions. The coincidence a0 ∼ cH0 has puzzled physicists since Milgrom
first noted it in 1983; here we see it is not a coincidence at all, but a direct consequence of
de Sitter thermodynamics. The Gibbons-Hawking temperature of our universe determines the
acceleration scale at which gravity changes character.

3 Volume-Law Entropy in de Sitter Space

Holography has taught us that gravitational systems carry entropy proportional to their boundary
area, not their volume. A black hole’s entropy scales as r2, not r3, regardless of what fell in to
form it. This area law is often taken as a fundamental principle, suggesting that the degrees of
freedom in any gravitational system are somehow “painted” on surfaces rather than distributed
through space.

De Sitter space challenges this picture. The thermal radiation from the cosmological horizon
fills the interior with entropy that scales with volume, not area. This section shows that this
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volume-law contribution is not only consistent with holography but required by it—the volume
entropy exactly saturates the Bousso covariant entropy bound at the cosmological scale.

3.1 The de Sitter Vacuum as a Thermal State

To understand the origin of volume entropy, we must examine how quantum field theory behaves
when the spacetime itself has a horizon. Consider the vacuum state of a quantum field in de
Sitter space. The full Hilbert space naturally factorizes as Hfull = Hin ⊗Hout, where Hin contains
modes inside the cosmological horizon and Hout contains modes beyond it.

The crucial insight is that what we call “the vacuum” from a global perspective is not a
vacuum at all from the perspective of an observer confined to the static patch. The global
vacuum state is entangled across the horizon:

|0⟩ =
∑
n

e−πEn/ℏH0 |n⟩in ⊗ |n⟩out. (7)

When the observer traces over the inaccessible super-horizon modes, the remaining state is
thermal:

ρin = Trout|0⟩⟨0| = 1
Z

∑
n

e−2πEn/ℏH0 |n⟩in⟨n|. (8)

This is a Boltzmann distribution at precisely the Gibbons-Hawking temperature TdS = ℏH0/(2πkB).
The de Sitter horizon is not just radiating—it is maintaining its interior in thermal equilibrium
with itself.

3.2 The Volume Entropy Density

A thermal state at temperature T carrying energy density ρ has entropy density s = ρ/T . For
de Sitter space, the vacuum energy density is

ρΛ = Λc4

8πG = 3c2H2
0

8πG , (9)

where the second equality uses Λ = 3H2
0/c

2 for a flat universe approaching de Sitter at late
times. Dividing by the Gibbons-Hawking temperature gives the entropy density

sΛ = ρΛ
TdS

= 3c2H2
0

8πG · 2πkB
ℏH0

= 3c2H0kB
4Gℏ . (10)

In numerical terms, sΛ ≈ 2.2 × 1043 kB m−3—an enormous entropy density by ordinary
standards. A cubic meter of de Sitter vacuum carries more entropy than most astrophysical
systems. Yet because this entropy is spread uniformly through space, it is invisible to local
experiments; it manifests only when we consider gravitational dynamics on scales where significant
volume is enclosed.

3.3 Total Entropy: Area Plus Volume

A spherical region of radius r inside the static patch therefore carries entropy from two sources:
the standard area-law contribution from entanglement across its boundary, and the volume-law
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contribution from the thermal bath:

SdS(r) = A(r)
4Gℏ + sΛV (r) = πr2c3

Gℏ
+ πc2H0kBr

3

Gℏ
. (11)

The area term dominates at small scales; the volume term dominates at large scales. The
crossover occurs when r ∼ c/H0 = RH—precisely at the cosmological horizon.

3.4 Consistency with Holography

The volume-law entropy raises an apparent paradox: for sufficiently large regions, Svol >

Sarea, seemingly violating the holographic principle that entropy cannot exceed A/(4ℓ2P ). This
contradiction is resolved by recognizing that the naive statement of holography is incorrect.

The correct formulation is the Bousso covariant entropy bound [9]. For any surface B,
construct a light sheet—a null hypersurface generated by non-expanding null geodesics orthogonal
to B. The bound states that the entropy on this light sheet satisfies S ≤ A(B)/(4ℓ2P ). Crucially,
the bound applies to light sheets, not arbitrary spatial volumes. A spatial volume can exceed
the area bound; a light sheet cannot.

For de Sitter space, something remarkable happens when we apply the Bousso bound at the
cosmological horizon itself. The total volume entropy within the static patch equals

Stotal
vol = sΛ · VH = 3c2H0kB

4Gℏ · 4πc3

3H3
0

= πc5kB
GℏH2

0
, (12)

while the horizon entropy is

SH = AH
4ℓ2P

= 4πR2
H · c3

4Gℏ = πc5

GℏH2
0
. (13)

These are identical (in natural units where kB = 1). The volume entropy exactly saturates
the Bousso bound—it does not violate holography because it is the holographic entropy of the
horizon, expressed in bulk variables. The thermal entropy filling the interior is the same entropy
that lives on the boundary, just described in a different language.

This saturation has physical content: it means that de Sitter space is a maximally entropic
configuration, unable to hold more information without collapsing into a state with a different
cosmological constant. Any matter placed inside must “displace” entropy from this thermal
bath, and when the displacement becomes significant, the gravitational dynamics change. This
is the origin of MOND phenomenology, as we develop in the next section.

4 Emergence of the MOND Acceleration Scale

Having established that de Sitter space carries extensive volume entropy at the Gibbons-Hawking
temperature, we now derive the central result of this paper: the MOND acceleration scale
emerges as a consequence of entropy equilibrium, with no free parameters.

4.1 Entropy Displacement by Matter

The first step is to understand how matter interacts with the de Sitter thermal bath. Consider
placing a mass M at rest in a region of de Sitter space. The mass represents bound energy E =
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Mc2 that has been “removed” from the thermal background. By the first law of thermodynamics,
removing energy dE from a system at temperature T reduces its entropy by dS = dE/T . The
mass therefore creates an entropy displacement

∆S(M) = Mc2

TdS
= 2πkBMc2

ℏH0
. (14)

This is not a small effect. The de Sitter temperature TdS ≈ 2.7 × 10−30 K is extraordinarily low,
so even modest masses create enormous entropy deficits relative to the thermal background.

To develop physical intuition, consider a Milky Way-sized galaxy with baryonic mass M ≈
1011M⊙. Substituting into Eq. (14) yields ∆S ≈ 1099kB—an incomprehensibly large number.
This entropy debt cannot simply vanish; it must be accommodated by rearrangements in the
surrounding de Sitter geometry. The question is whether the available entropy budget is sufficient.

4.2 The Entropy Budget

The de Sitter volume entropy, derived in Section 3, fills space with an entropy density sΛ =
3c2H0kB/(4Gℏ). Within a spherical region of radius r, the available entropy is

Savailable(r) = sΛ · 4πr3

3 = πc2H0kBr
3

Gℏ
. (15)

This grows as r3, so sufficiently large regions can accommodate any finite entropy displacement.
The crucial question is: how large must the region be?

Local thermodynamic equilibrium requires that the entropy displaced by the mass can be
absorbed within the region where the mass exerts significant gravitational influence. If we define
the “gravitational influence region” as the volume where the Newtonian potential exceeds some
threshold, equilibrium demands

Savailable(r) ≥ Sdisplaced(M). (16)

When this inequality is satisfied, small curvature adjustments can restore equilibrium, and
standard general relativity applies. When it fails—when the entropy deficit exceeds what
the local volume can provide—the excess must spread non-locally, fundamentally altering the
gravitational dynamics.

4.3 The Critical Radius

The boundary between these regimes occurs at the critical radius rc where the available and
displaced entropies are exactly equal:

Sdisplaced(M) = Savailable(rc). (17)

Substituting the expressions derived above:

2πkBMc2

ℏH0
= πc2H0kBr

3
c

Gℏ
. (18)
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The factors of π, kB, c2, and ℏ cancel, leaving a remarkably simple result:

rc =
(2GM
H2

0

)1/3
. (19)

This critical radius has a natural physical interpretation: it marks the distance at which
the de Sitter expansion velocity v = H0r equals the escape velocity vesc =

√
2GM/r from the

central mass. Beyond rc, the cosmic expansion dominates over the local gravitational binding,
and the mass can no longer be treated as an isolated system in flat spacetime.

The numerical values are striking. For the Sun (M = M⊙), the critical radius is rc ≈ 700 light-
years—far beyond the solar system but well within the Milky Way. For a typical galaxy
(M = 1011M⊙), the critical radius is approximately 100 kpc, comparable to the observed extent
of flat rotation curves. For a galaxy cluster (M = 1014M⊙), the critical radius extends to several
Mpc. These scales are precisely where the transition from Newtonian to MOND-like behavior is
observed.

4.4 The Universal Acceleration Scale

The critical radius depends on the mass M , so different objects have different values of rc.
However, the acceleration at the critical radius reveals a universal scale that depends only on
cosmological parameters.

The Newtonian gravitational acceleration at radius rc is

ac = GM

r2
c

= GM(
2GM/H2

0
)2/3 = (GM)1/3H

4/3
0

22/3 . (20)

This still depends on M , so ac itself is not universal. But the characteristic scale that governs
the transition emerges from the intrinsic properties of the de Sitter thermal bath, independent
of any particular mass.

The de Sitter horizon radiates at temperature TdS = ℏH0/(2πkB), which sets a natural
energy scale EdS = kBTdS = ℏH0/(2π). To convert this energy to an acceleration, we use the
Planck mass mP =

√
ℏc/G and Planck length ℓP =

√
ℏG/c3 as the natural units of mass and

length:
a0 = EdS

mP ℓP
= ℏH0/(2π)√

ℏc/G ·
√
ℏG/c3 = cH0

2π . (21)

This is our central result: the MOND acceleration scale is determined entirely by fundamental
constants and the present-day Hubble parameter.

Prediction: The characteristic acceleration below which gravitational dynamics deviate
from Newtonian behavior is

a0 = cH0
2π ≈ 1.08 × 10−10 m/s2. (22)

This contains no adjustable parameters—it is a direct prediction from de Sitter thermody-
namics.

Numerically, using c = 3 × 108 m/s and H0 = 2.3 × 10−18 s−1 (corresponding to H0 =
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70 km/s/Mpc):

a0 = (3 × 108)(2.3 × 10−18)
2π ≈ 1.1 × 10−10 m/s2. (23)

The observed MOND scale from galaxy rotation curve fits is aobs
0 ≈ (1.2 ± 0.2) × 10−10 m/s2 [7].

The agreement to within 10% is remarkable for a parameter-free prediction connecting cosmology
to galactic dynamics.

4.5 Modified Gravitational Dynamics

Having identified the critical acceleration scale, we now derive how gravitational dynamics change
when gN < a0. The entropy equilibrium condition δSgen = 0 must include the volume entropy
contribution when local equilibrium fails.

The physical picture is as follows. At high accelerations (gN ≫ a0), the entropy displaced by
a mass is easily accommodated within a small region, and the standard Einstein equations apply.
At low accelerations (gN ≪ a0), the entropy deficit cannot be localized; it spreads through the
de Sitter volume, creating a non-local “strain” in the entropy distribution. This strain generates
an additional contribution to the gravitational field that supplements the Newtonian term.

The mathematical expression of this physics is the modified Poisson equation:

∇ ·
[
µ

( |∇Φ|
a0

)
∇Φ

]
= 4πGρ, (24)

where Φ is the gravitational potential, ρ is the matter density, and µ(x) is an interpolation
function satisfying

• µ(x) → 1 for x ≫ 1 (Newtonian regime), and

• µ(x) → x for x ≪ 1 (deep MOND regime).

The form of the interpolation function encodes how the transition between regimes occurs.
The entropy arguments specify the limiting behaviors but not the detailed shape of µ(x).
Phenomenologically, the standard ansatz µ(x) = x/

√
1 + x2 provides excellent fits to rotation

curve data [7]. Deriving µ(x) rigorously from the microscopic entropy dynamics remains an open
problem.

The effective gravitational field geff = −∇Φ takes different forms in the two regimes. In the
Newtonian regime where gN ≫ a0:

geff = gN = GM

r2 , (25)

recovering Newton’s inverse-square law exactly. In the deep MOND regime where gN ≪ a0:

geff = √
gN · a0 =

√
GMa0
r2 =

√
GMa0
r

. (26)

The acceleration now falls as 1/r rather than 1/r2, which directly produces flat rotation curves:
if v2/r = geff ∝ 1/r, then v = constant.
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4.6 The Baryonic Tully-Fisher Relation

The most celebrated success of MOND phenomenology is the baryonic Tully-Fisher relation,
which relates the asymptotic rotation velocity of a disk galaxy to its total baryonic mass. Our
framework predicts this relation with no free parameters.

For a test particle in circular orbit at radius r in the deep MOND regime, the centripetal
acceleration equals the gravitational field:

v2

r
= geff =

√
GMa0
r2 . (27)

Squaring both sides and rearranging:

v4

r2 = GMa0
r2 . (28)

The factors of r2 cancel, yielding the mass-independent relation

v4 = GMa0 = GM · cH0
2π . (29)

This is the baryonic Tully-Fisher relation with normalization completely fixed by cosmology.
The relation v4 ∝ M holds exactly in the deep MOND limit, with slope 4 on a log-log plot of
velocity versus mass. The observed slope is 3.98 ± 0.12 [8], in excellent agreement with the
prediction.

To verify the normalization, consider a galaxy with baryonic mass M = 1011M⊙ = 2×1041 kg.
Substituting into Eq. (29):

v4 = (6.67 × 10−11 m3kg−1s−2)(2 × 1041 kg)(1.1 × 10−10 m/s2)
≈ 1.5 × 1021 m4/s4. (30)

Taking the fourth root: v ≈ 200 km/s, matching the observed rotation velocities of Milky
Way-sized galaxies.

The tight scatter observed in the Tully-Fisher relation now has a natural explanation. In
dark matter models, the relation arises from a correlation between visible and dark matter that
must be imposed by hand. In our framework, the relation is fundamental: it follows directly
from the thermodynamic properties of de Sitter space, with no room for scatter from varying
dark matter halo properties.

5 Regime Separation: GR versus MOND

A theory that modifies gravity at low accelerations must explain why no deviations from general
relativity are observed in the solar system, where precision tests constrain any departure to
parts per billion. This section develops a systematic framework for understanding when GR
applies exactly and when MOND corrections become significant.
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5.1 The Control Parameter

The natural dimensionless parameter that governs the transition between regimes is the ratio of
the local Newtonian acceleration to the MOND scale:

ϵ(r) ≡ gN (r)
a0

= GM

r2a0
= 2πGM

r2cH0
. (31)

When ϵ ≫ 1, Newtonian gravity dominates and cosmological effects are negligible; when ϵ ≲ 1,
the volume entropy becomes dynamically important and MOND corrections emerge.

To see this quantitatively, consider how the different contributions to the generalized entropy
scale. The entropy equilibrium condition δSgen = 0 involves three terms: the area entropy
δSarea, the bulk matter entropy δSbulk, and the de Sitter volume entropy δSvol. For a spherically
symmetric perturbation at radius r, dimensional analysis gives

δSarea ∼ r

Gℏ
δr, (32)

δSbulk ∼ c2r2ϵ

Gℏ
δr, (33)

δSvol ∼ c2H0r
2

Gℏ
δr. (34)

The ratio of volume to bulk contributions scales as δSvol/δSbulk ∼ 1/ϵ. This motivates organizing
the equilibrium condition as an expansion in inverse powers of ϵ:

δSgen = δSarea + δSbulk︸ ︷︷ ︸
O(1)

+ ϵ−1δS
(1)
vol︸ ︷︷ ︸

O(ϵ−1)

+O(ϵ−2). (35)

5.2 The Three Dynamical Regimes

The expansion reveals three distinct physical regimes, each with characteristic gravitational
dynamics.

In the high-acceleration regime where ϵ ≫ 1, the 1/ϵ terms are negligible. The equilibrium
condition reduces to δSarea + δSbulk = 0, which is precisely Jacobson’s derivation of Einstein’s
equations. General relativity emerges exactly, with corrections suppressed by a0/gN . This is
why solar system tests see pure GR: at Earth’s surface where gN ≈ 10 m/s2, we have ϵ ≈ 1011,
and any MOND correction is at the level of 10−11—far below measurement precision.

In the transition regime where ϵ ∼ 1, all three contributions compete comparably. The
equilibrium condition δSarea + δSbulk + δSvol = 0 yields interpolated dynamics described by

geff · µ
(
geff
a0

)
= gN , (36)

where µ(x) is an interpolation function that smoothly connects the two limiting behaviors.
In the low-acceleration regime where ϵ ≪ 1, the volume term dominates and the equilibrium

condition gives the deep MOND result geff = √
gNa0. The effective gravitational field now falls

as 1/r rather than 1/r2, producing flat rotation curves.
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5.3 Precision Tests in the Solar System

The framework must explain why no MOND effects appear in precision solar system tests. The
answer lies in the enormous values of ϵ throughout the inner solar system. At Earth’s surface,
where gN ≈ 10 m/s2, the ratio is ϵ ≈ 1011, suppressing any MOND correction to the level of
10−11. At Mercury’s perihelion, ϵ ≈ 4 × 108, predicting deviations at the 10−9 level—safely
below the precision of perihelion precession measurements. Even at Voyager 2’s current distance
of 120 AU, where gN ≈ 4 × 10−6 m/s2, we have ϵ ≈ 104, keeping corrections at 10−4—below the
precision of deep-space tracking.

The critical radius rc at which ϵ = 1 marks where the inverse-square law begins to fail. For
the Sun, this radius is

rc =
(2GM⊙

H2
0

)1/3
≈ 700 light years. (37)

The entire solar system lies well within this radius, explaining why Newtonian gravity appears
exact. For a typical galaxy with M = 1011M⊙, the critical radius is rc ≈ 100 kpc, beyond the
optical radius but within the region probed by rotation curves and satellite galaxy dynamics.
This is precisely where MOND phenomenology is observed.

5.4 The Spectrum of Gravitational Environments

Astrophysical systems span an enormous range in ϵ, from 1013 in binary pulsars to 0.01 in
cosmic voids. The framework makes specific predictions for each environment: GR should be
exact to parts in 107–1013 in the solar system and pulsars; near-Newtonian behavior with small
corrections should appear in galactic bulges (ϵ ∼ 10); full MOND dynamics should operate in
galaxy outskirts and halos (ϵ ≲ 1); and deep MOND with possible higher-order corrections
should characterize galaxy clusters (ϵ ∼ 0.3) and void regions (ϵ ∼ 0.01). No tuning is required
to achieve this hierarchy—it emerges automatically from the single scale a0 = cH0/(2π).

5.5 Cosmological Evolution of the MOND Scale

A crucial prediction distinguishes this framework from phenomenological MOND: the acceleration
scale evolves with cosmic time. Since a0 = cH/(2π) and the Hubble parameter changes as the
universe expands, the MOND scale was larger in the past. Specifically,

a0(z) = cH(z)
2π = a0(0) ·

√
Ωm(1 + z)3 + ΩΛ. (38)

At redshift z = 1, the MOND scale was about 1.7 times larger than today; at z = 3, about 3.7
times larger; at recombination (z ∼ 1100), roughly 5700 times larger.

This evolution has profound consequences. At higher redshift, with a larger a0, more systems
fall into the Newtonian regime. Rotation curve anomalies should appear at smaller radii for
high-redshift galaxies, and extremely high-redshift systems may appear entirely Newtonian. This
is a testable prediction: surveys with JWST and Euclid can measure rotation curves at z ∼ 1–3
and check whether the transition radius scales as predicted.
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5.6 Consistency with the Cosmic Microwave Background

The framework’s most stringent test comes from the cosmic microwave background. At recombi-
nation, a0(z = 1100) ≈ 6 × 10−7 m/s2—much larger than the present-day value. The critical
radius for a proto-cluster shrinks to roughly 3 kpc, while the acoustic oscillations occur on
scales of 150 Mpc. The entire CMB physics operates deep in the Newtonian regime, where our
framework reduces exactly to standard gravity.

This resolves a long-standing objection to MOND: how can a theory that modifies gravity
explain the CMB acoustic peaks without dark matter? The answer is that the CMB probes
accelerations far above a0(zrec), where the framework predicts no modification. The acoustic
peaks are consistent with standard ΛCDM precisely because that is what our framework predicts
at early times.

5.7 The Galaxy Cluster Tension

Galaxy clusters present a known challenge for MOND: even after accounting for MOND dynamics,
clusters show a mass discrepancy of factor 2–5 between the dynamically inferred mass and the
observed baryonic mass. This residual discrepancy has been used to argue that MOND cannot
fully replace dark matter.

Within our framework, clusters occupy the transition regime with ϵ ∼ 0.1–1, where the
ϵ-expansion requires higher-order terms. The leading MOND correction scales as ϵ−1, but
subleading corrections proportional to ϵ−2 and higher become non-negligible when ϵ approaches
unity. These higher-order terms are sensitive to the density gradient ∇2ρ/ρ, not just the local
density, making them significant in the extended, non-uniform environment of galaxy clusters.

Several additional effects may contribute to the cluster tension. Galaxy clusters are triaxial,
not spherical, and the departure from spherical symmetry affects the entropy equilibrium in
ways not captured by our spherically symmetric analysis. The intracluster medium at T ∼ 108

K contributes its own thermodynamics that may modify the effective temperature governing
entropy balance. Neutrinos with ∑mν ∼ 0.1 eV contribute 1–5% of the cluster mass, partially
closing the gap. A complete resolution requires detailed calculations of all these effects, which
remains an important direction for future work.

6 Covariant Completion: Entanglement-Elastic Gravity

The preceding sections developed a non-relativistic framework in which MOND phenomenology
emerges from the thermodynamics of de Sitter space. While this successfully explains galactic
dynamics and predicts the acceleration scale a0 = cH0/(2π), a complete theory requires fully
covariant field equations that reduce to the modified Poisson equation in the appropriate limit.
This section develops Entanglement-Elastic Gravity (EEG), a relativistic extension that achieves
this goal while maintaining consistency with gravitational wave observations and avoiding the
pathologies that plague many modified gravity theories.

6.1 Conceptual Foundation

The key insight underlying EEG is that spacetime exhibits two distinct but interacting forms of
quantum entanglement, each contributing to the gravitational dynamics in different regimes.

16



The first form is local entanglement, which obeys an area law. Across any infinitesimal surface
in spacetime, quantum degrees of freedom form short-range Bell pairs, contributing entropy
proportional to the surface area: Sarea = A/(4ℓ2P ). This is the entanglement that Jacobson [1]
showed gives rise to Einstein’s equations when one demands that the generalized entropy remain
stationary. The area-law network encodes the local curvature of spacetime and is described
mathematically by the metric tensor gµν .

The second form is global entanglement, which obeys a volume law. The de Sitter horizon
at distance c/H0 creates a thermal bath that fills the interior with long-range entanglement at
density sΛ = 3c2H0kB/(4Gℏ). This volume-law network has no analog in flat spacetime—it is a
genuinely cosmological contribution that arises from the finite size of the observable universe.

Matter interacts with both networks simultaneously. When a mass M is placed in spacetime,
it requires area-law equilibrium on surrounding surfaces (producing local curvature) while also
displacing volume-law entropy ∆S ∼ Mc2/TdS from the thermal background (creating global
strain). At high accelerations where g ≫ a0, the area-law contribution dominates, and standard
general relativity applies. At low accelerations where g ≲ a0, the volume-law strain becomes
significant, producing the MOND-like modifications we observe in galactic dynamics. The critical
scale a0 = cH0/(2π) marks the crossover where both contributions are comparable.

To describe this physics mathematically, we introduce a scalar field ψ(x) that quantifies the
local displacement of volume-law entanglement. Where matter is present, ψ is large; in empty
regions far from matter, ψ approaches zero. The gradients of ψ represent the “strain” in the
entanglement network, and this strain contributes to the gravitational field equations through
an elastic stress tensor.

6.2 Microscopic Model

Before developing the field equations, it is helpful to have a concrete microscopic picture of how
entanglement elasticity arises. We present a toy model that captures the essential physics while
remaining agnostic about the ultraviolet completion.

Consider a closed spacelike surface H of area A. We discretize this surface into N = A/ℓ2P
Planck-sized plaquettes, each carrying a pair of “horizon qubits” (q(L)

i , q
(R)
i ). In the vacuum

state, these qubits are maximally entangled across the surface:

|Ψarea⟩ =
N⊗
i=1

|Φ+⟩i , where |Φ+⟩i = |00⟩i + |11⟩i√
2

. (39)

This state has von Neumann entropy S = N log 2 = A/(4ℓ2P ), reproducing the Bekenstein-
Hawking formula.

Injecting a mass M at the center of this surface disrupts the entanglement pattern. The
mass effectively “removes” a number of Bell pairs proportional to its rest energy:

n = 2πMc

ℏH0
. (40)

The removed pairs create an entanglement deficit that spreads through the surrounding space. If
we coarse-grain over many plaquettes, this deficit can be described by a continuous displacement
field ψ whose gradient measures the local strain. The elastic energy associated with this strain
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takes the standard quadratic form:

Eel = κ

2

∫
(∇ψ)2 d3x, (41)

where dimensional analysis combined with the requirement that the elastic force reproduce
MOND phenomenology fixes the modulus to

κ = c4

8πGa0
. (42)

This toy model has obvious limitations—it ignores gauge constraints, assumes instantaneous
equilibration, and leaves the scrambling dynamics unspecified. Nevertheless, it achieves three
important goals: it shows how area-law and volume-law entanglement can coexist in a single
quantum state, it reproduces the entropy displacement formula underlying MOND, and it
predicts the correct elastic modulus without fine-tuning. These features make it a useful guide
for constructing the covariant theory.

6.3 Effective Action

The covariant formulation of EEG follows from an action principle that enforces entanglement
equilibrium. The total action consists of three parts: the Einstein-Hilbert term for gravity, the
matter Lagrangian, and an elastic sector for the displacement field ψ:

Seff = 1
16πG

∫
R

√
−g d4x+

∫
Lmatter

√
−g d4x

+
∫ [

− c4

8πGa0
(∂ψ)2 − λ

(
ψ − 8πG

a0c2 ρrest

)]√
−g d4x. (43)

Here λ(x) is a Lagrange multiplier that enforces the constraint relating ψ to the matter density.
The coefficient c4/(8πGa0) in the kinetic term is fixed by requiring consistency with the non-
relativistic limit.

Several features of this action merit comment. First, the kinetic term for ψ has the standard
sign, ensuring that the theory is free of ghosts. The Hamiltonian density

Hψ = c4

8πGa0

[
(∂tψ)2 + (∇ψ)2

]
(44)

is manifestly non-negative, so the elastic sector is stable both classically and quantum mechani-
cally. Second, the constraint term couples ψ algebraically to the matter density, not dynamically.
This means that ψ does not propagate independently—it is determined instantaneously by
the matter distribution, similar to the Newtonian potential in non-relativistic gravity. Third,
the action reduces to standard general relativity when a0 → 0 (equivalently, when H0 → 0),
confirming that EEG is a genuine extension rather than a replacement.

6.4 Field Equations

Varying the action with respect to gµν yields the modified Einstein equations:

Gµν + Λgµν = 8πG
(
Tmatter
µν + T elastic

µν

)
, (45)
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where the elastic stress tensor takes the form

T elastic
µν = c4

4πGa0

(
∂µψ∂νψ − 1

2gµν(∂ψ)2
)
. (46)

This has the same structure as the stress tensor for a massless scalar field, but with ψ constrained
to track the matter distribution rather than evolving freely.

Varying with respect to ψ and λ yields the constraint equations:

∇2ψ = 4πGa0
c4 λ(x), (47)

ψ = 8πG
a0c2 ρrest(x). (48)

Combining these determines λ in terms of known quantities, completing the system.

6.5 Recovery of MOND in the Newtonian Limit

To verify that EEG reduces to the modified Poisson equation derived earlier, consider the
weak-field, slow-motion limit where g00 ≈ −(1 + 2Φ/c2) and time derivatives can be neglected.
The time-time component of Eq. (45) becomes

∇2Φ = 4πGρ+ c4

a0
(∇ψ)2. (49)

For a spherically symmetric, static matter distribution, the constraint ψ = 8πGρ/(a0c
2) can be

solved to give ∇ψ ∝ ∇Φ. Substituting this relation and simplifying yields

∇2Φ + 1
a0

∇ · (∇Φ · ∇Φ) = 4πGρ, (50)

which is precisely the modified Poisson equation of Section 4. The covariant theory therefore
reproduces the non-relativistic phenomenology by construction.

6.6 Gravitational Waves

A crucial test of any modified gravity theory is consistency with gravitational wave observations.
The detection of GW170817 and its electromagnetic counterpart GRB 170817A [21] established
that gravitational waves travel at the speed of light to within one part in 1015. Many modified
gravity theories, including some MOND extensions, predict deviations from c and are therefore
ruled out.

EEG passes this test. The elastic sector modifies only the scalar part of the gravitational
field—it contributes to the energy density and pressure that source curvature but does not alter
the propagation of tensor perturbations. Gravitational waves in EEG travel on null geodesics of
the background metric at exactly speed c, in agreement with observations.

6.7 Comparison with Alternative Approaches

EEG offers several advantages over both dark matter models and phenomenological MOND.
Compared to dark matter, EEG requires no new particles, no fine-tuning of halo profiles, and no
“cosmic conspiracy” to explain the tight Tully-Fisher relation—the scaling emerges automatically

19



from the thermodynamic origin of a0. Compared to phenomenological MOND, EEG provides
a complete relativistic framework with a microscopic foundation in quantum entanglement,
natural incorporation of the cosmological constant, and compatibility with gravitational wave
constraints.

The theory does have limitations. The interpolation function µ(x) is not derived from first
principles but must be chosen phenomenologically. The strong-field regime (black holes, neutron
stars) has not been fully analyzed. Cosmological perturbation theory, including predictions for
the CMB and large-scale structure, requires numerical implementation in a Boltzmann code.
These are topics for future work.

6.8 Summary

Entanglement-Elastic Gravity provides a covariant completion of the thermodynamic MOND
framework developed in earlier sections. The theory introduces a scalar displacement field ψ that
encodes the strain in the cosmological entanglement network caused by the presence of matter.
This field contributes an elastic stress tensor to Einstein’s equations, producing MOND-like
modifications at low accelerations while preserving general relativity at high accelerations. The
theory is ghost-free, predicts gravitational wave speed equal to c, and reduces to the modified
Poisson equation in the Newtonian limit. The acceleration scale a0 = cH0/(2π) emerges from
the same thermodynamic arguments that motivated the non-relativistic framework, requiring no
new free parameters.

7 Testable Predictions

A theoretical framework earns credibility through predictions that can be tested and potentially
falsified. This section presents the observational consequences of entanglement-elastic gravity,
ranging from already-verified galactic phenomenology to novel signatures that distinguish this
framework from alternatives.

7.1 Parameter-Free Predictions Already Confirmed

The framework makes two central predictions with no adjustable parameters, both of which
match observations.

The first is the MOND acceleration scale itself. From de Sitter thermodynamics, we predict

a0 = cH0
2π ≈ 1.08 × 10−10 m/s2. (51)

The observed value from galaxy rotation curve fits is aobs
0 = (1.2 ± 0.1) × 10−10 m/s2. Agreement

to within 10% for a quantity spanning 11 orders of magnitude below terrestrial gravity, with no
free parameters, is remarkable.

The second is the baryonic Tully-Fisher relation. In the deep MOND regime, v4 = GMa0,
predicting a slope of exactly 4 on a log-log plot of velocity versus mass, with normalization fixed
by the same a0. The observed slope is 3.98 ± 0.12, and the scatter in the relation is consistent
with measurement error alone—no intrinsic scatter from varying “dark matter halo” properties.
This tight correlation, which requires fine-tuning in dark matter models, emerges automatically
from thermodynamic principles.
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7.2 Predictions for Precision Tests

The framework predicts that deviations from GR scale as a0/gN in any high-acceleration
environment. This means lunar laser ranging, with ϵ ∼ 1011, should show GR to parts in
1011; Mercury’s perihelion precession, with ϵ ∼ 108, should match GR to parts in 108; and
binary pulsar timing, with ϵ ∼ 1013, should be the most stringent test of pure GR. All current
precision tests are consistent with these predictions. Importantly, the framework predicts that no
anomalous effects should appear in these high-ϵ systems—any claimed detection of MOND-like
effects in the inner solar system would falsify the framework.

7.3 Novel Predictions: Cosmological Evolution

The most distinctive prediction is the redshift evolution of the MOND scale. Since a0(z) =
cH(z)/(2π) and the Hubble parameter was larger in the past, galaxies at high redshift should
show MOND effects at smaller radii than their present-day counterparts.

At redshift z = 1, the MOND scale was approximately 1.7 times larger. A galaxy with fixed
baryonic mass should therefore have had an asymptotic rotation velocity about 14% higher
than the same galaxy would have today. At z = 2, with a0 about 2.8 times larger, many
galaxies should appear nearly Newtonian. These predictions can be tested with JWST and
Euclid observations of high-redshift rotation curves, providing a clear discriminator between this
framework and phenomenological MOND (which assumes constant a0).

The CMB provides another consistency check. At recombination, a0 ≈ 6 × 10−7 m/s2, so
large that all CMB-relevant scales lie deep in the Newtonian regime. The acoustic peaks should
match ΛCDM predictions exactly, which they do. No modification to the standard CMB analysis
is required.

7.4 Falsification Criteria

The framework makes strong predictions that can be falsified. If precision measurements establish
that a0 ̸= cH0/(2π) at greater than 20% discrepancy, the thermodynamic derivation would
be wrong. If MOND-like effects are detected in high-ϵ systems at levels exceeding a0/gN—for
example, anomalous perihelion precession at parts in 106 rather than 109—the regime separation
would be violated. Most distinctively, if high-redshift galaxies show the same MOND scale as
local galaxies rather than the predicted a0(z) ∝ H(z), the entire framework would be falsified.

The galaxy cluster tension represents an incomplete rather than falsified prediction. If
detailed calculations of higher-order corrections, non-spherical geometry, hot gas effects, and
neutrino contributions fail to close the factor 2–5 gap, this would indicate that additional physics
is needed—though not necessarily that the framework is wrong at the galactic level.

7.5 Comparison with Alternatives

Several approaches have been proposed to explain MOND phenomenology. Standard MOND
treats a0 as an empirical constant fitted to data, with no explanation for its value or cosmic
evolution. Tensor-vector-scalar (TeVeS) theories provide a relativistic completion but require
multiple fields and free parameters, and typically assume constant a0. Verlinde’s emergent
gravity derives an acceleration scale from holographic principles but does not specify its redshift
evolution.
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This framework is unique in predicting a0 = cH/(2π) from first principles, with zero free
parameters and explicit dependence on H(z). The redshift evolution is the key discriminator:
phenomenological MOND predicts constant a0, while we predict a0(z) ∝ H(z). Next-generation
surveys can distinguish these scenarios.

7.6 Implications for Dark Matter Searches

If this framework correctly explains galactic dynamics, the “missing mass” in galaxies is a
gravitational effect arising from cosmological entropy, not a particle physics phenomenon. Direct
detection experiments would find no WIMP dark matter, and collider searches would produce
no dark matter candidates, because none exist at the relevant scales. This does not preclude the
existence of dark matter particles—sterile neutrinos, axions, or other relics may well exist—but
suggests they are not responsible for galaxy rotation curves. The cluster tension may require
residual dark matter at the 1–10% level, possibly from massive neutrinos with ∑mν ∼ 0.1–0.5
eV.

8 Conclusions

This paper has developed a theoretical foundation for MOND phenomenology based on the
thermodynamics of de Sitter space. The central insight is that the cosmological horizon acts as
a thermal reservoir, filling the observable universe with volume-law entropy that competes with
the standard area-law contribution to gravitational dynamics.

When matter is placed in this thermal bath, it displaces entropy from the background, creating
a thermodynamic strain that contributes to the gravitational field. At high accelerations, where
the local curvature can easily accommodate this displacement, standard general relativity
applies. At low accelerations, where the entropy deficit spreads non-locally through the de
Sitter volume, modified dynamics emerge. The transition occurs at the acceleration scale
a0 = cH0/(2π) ≈ 1.1 × 10−10 m/s2, matching the observed MOND scale with no adjustable
parameters.

The framework makes concrete, falsifiable predictions. It explains why no MOND effects
appear in the solar system (where ϵ ≫ 1) while producing flat rotation curves and the Tully-
Fisher relation in galaxies (where ϵ ≲ 1). It predicts that the MOND scale evolves with cosmic
time as a0(z) ∝ H(z), so high-redshift galaxies should show MOND effects at smaller radii. It
preserves the success of standard cosmology at the CMB epoch, where all relevant scales lie deep
in the Newtonian regime.

8.1 Relation to the Broader Framework

This paper is part of a series developing quantum-geometric duality—the thesis that quantum
mechanics and general relativity are dual descriptions of the same underlying reality. Paper A
derives gravitational decoherence from entanglement equilibrium; Paper B shows how holographic
dark energy emerges; Paper C presents the complete axiomatic framework. The present work
extends these ideas to de Sitter backgrounds, where the cosmological horizon introduces new
thermodynamic effects absent in asymptotically flat spacetime.

The volume entropy is a background-dependent phenomenon that appears when Λ > 0, not a
modification of the universal axioms. In the limit Λ → 0, the de Sitter temperature vanishes, the

22



volume entropy disappears, and standard general relativity is recovered exactly. The MOND-like
modifications are thus a cosmological effect, arising from the finite size of the observable universe
rather than from new fundamental physics at short distances.

8.2 Open Problems

Several important questions remain for future work. The interpolation function µ(x) that governs
the transition between Newtonian and deep MOND regimes is introduced phenomenologically;
deriving it rigorously from the underlying entropy dynamics would strengthen the framework
considerably. The galaxy cluster tension—a factor 2–5 mass discrepancy even after MOND
corrections—likely involves higher-order terms in the ϵ-expansion, non-spherical geometry, and
hot gas thermodynamics, but detailed calculations are needed.

The framework as developed here assumes quasi-static configurations. Extending it to
dynamical situations—galaxy mergers, structure formation, time-dependent gravitational fields—
requires a time-dependent entropy analysis that has not been attempted. The volume entropy
is fundamentally a semiclassical concept; a full quantum gravity treatment might confirm the
volume-law from explicit entanglement calculations, reveal the microscopic origin of sΛ, and
suggest quantum corrections that could resolve residual tensions.

8.3 Experimental Outlook

The next decade offers unprecedented opportunities to test this framework. JWST and Euclid
can measure rotation curves at z ∼ 1–3, directly testing whether a0(z) ∝ H(z) as predicted.
Gaia DR4 and DR5 will provide precision dynamics for wide binary stars and the outer Milky
Way, probing the transition regime. DESI and future spectroscopic surveys can measure the
growth rate of structure, testing whether the predicted suppression ∆fσ8 ≈ −0.03 at z = 0.8 is
observed. Gravitational wave observations with next-generation detectors can probe strong-field
predictions of the covariant extension.

8.4 Final Remarks

The emergence of MOND phenomenology from de Sitter thermodynamics provides a compelling
answer to a 40-year-old puzzle: why does the MOND scale coincide with cH0? The answer
is that both arise from the same physics—the thermodynamic properties of the cosmological
horizon. The acceleration a0 = cH0/(2π) is not a coincidence but a prediction, connecting
cosmology to galaxy dynamics through the universal language of entropy.

This framework does not eliminate dark matter as a possibility, but suggests that whatever
“dark” component exists is not responsible for the regularities observed in galactic dynamics.
The tight baryonic Tully-Fisher relation, the universal acceleration scale, the flat rotation curves
extending far beyond visible matter—all emerge naturally from thermodynamic principles, with
no new particles and no free parameters. Whether this picture survives confrontation with data
remains to be seen, but the framework is precise enough to be falsified and predictive enough to
be tested.
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Appendices

A Derivation Details

A.1 Surface Gravity of de Sitter Horizon

From the metric:
ds2 = −f(r)c2dt2 + f(r)−1dr2 + r2dΩ2 (52)

with f(r) = 1 − r2/R2
H .

The Killing vector is kµ = (1, 0, 0, 0). The acceleration of a static observer at radius r:

aµ = kν∇νk
µ = c2r/R2

H√
f(r)

r̂ (53)

The surface gravity:

κ = lim
r→RH

√
f(r) · a = c2

RH
= cH0 (54)

A.2 Volume Entropy from Partition Function

The partition function for a scalar field in de Sitter:

lnZ = −
∑
n

ln(1 − e−βωn) (55)

In the continuum limit with density of states D(ω):

lnZ = −
∫ ∞

0
dωD(ω) ln(1 − e−βω) (56)

For de Sitter, D(ω) ≈ ω2V for low frequencies, giving:

lnZ ≈ π2

90
V

(βℏc)3 (57)

The entropy:

S = β2 ∂

∂β
(β−1 lnZ) = 2π2

45 g∗kB

(
kBT

ℏc

)3
V (58)

For g∗ ∼ O(1) and T = TdS, this gives the volume entropy Svol = sΛV .

A.3 Modified Poisson Equation from δSgen = 0

Starting from δSgen = 0 with volume term:

δA

4Gℏ + δSbulk + sΛδV = 0 (59)

Using:

• δA/(4Gℏ) ≈ −ℓd+1G00/(Gℏ) (Raychaudhuri)

• δSbulk ≈ ℓd+1T00/T (first law)
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• δV = ℓ3 for perturbation scale ℓ

For a localized mass, the equilibrium condition in the low-acceleration limit becomes:

∇2Φ = 4πGρ+ λMOND∇ ·
( ∇Φ

|∇Φ|

√
|∇Φ|

)
(60)

where λMOND = √
a0.

This can be rewritten in the standard MOND form:

∇ ·
[
µ

( |∇Φ|
a0

)
∇Φ

]
= 4πGρ (61)

A.4 Response Kernel from Modular Hamiltonian

For the vacuum state restricted to a causal diamond D in de Sitter, the modular Hamiltonian is:

K = 2π
∫
D

(ℓ2 − |x|2)
2ℓ T00(x) d3x+Khorizon (62)

The response kernel arises from the fluctuation-dissipation relation:

χ(x, x′) = 1
TdS

⟨δK(x)δρM (x′)⟩ (63)

From the de Sitter Green’s function G(r) ∝ e−r/RH/r:

χ(r) = χ0 · RH
r

· e−r/RH (64)

The normalization χ0 is fixed by:∫
d3xχ(x) = 2πkBc2

ℏH0
(65)

B Numerical Constants and Values

B.1 Fundamental Constants

Quantity Symbol Value

Speed of light c 2.998 × 108 m/s
Planck constant ℏ 1.055 × 10−34 J·s
Newton’s constant G 6.674 × 10−11 m3/(kg·s2)
Boltzmann constant kB 1.381 × 10−23 J/K
Planck length ℓP 1.616 × 10−35 m
Planck mass mP 2.176 × 10−8 kg
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B.2 Cosmological Parameters

Quantity Symbol Value

Hubble constant H0 2.27 × 10−18 s−1 (70 km/s/Mpc)
de Sitter radius RH 1.32 × 1026 m (14 Gly)
de Sitter temperature TdS 2.78 × 10−30 K
Matter density Ωm 0.31
Dark energy density ΩΛ 0.69

B.3 Derived Quantities

Quantity Symbol Value

MOND acceleration a0 1.08 × 10−10 m/s2

Volume entropy density sΛ 3.0 × 1020 J/(K·m3)
Horizon entropy SH ∼ 10122kB

B.4 System-Specific Values

System Mass rc ϵ (edge)

Sun 2.0 × 1030 kg 700 ly 104 at 50 AU
Milky Way (baryonic) 1011M⊙ 100 kpc ∼ 1 at 30 kpc
Massive galaxy 1012M⊙ 200 kpc ∼ 1 at 50 kpc
Galaxy cluster 1014M⊙ 3 Mpc ∼ 0.3 at 1 Mpc

B.5 Comparison with Observations

Quantity Predicted Observed

a0 1.08 × 10−10 m/s2 (1.2 ± 0.1) × 10−10 m/s2

BTFR slope 4.00 3.98 ± 0.04
Tully-Fisher normalization Fixed by a0 Consistent

Agreement is within 10% with no adjustable parameters.
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