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Abstract

Gravitational decoherence—the loss of quantum coherence due to gravitational effects—
presents a sharp theoretical puzzle: the Diósi-Penrose mechanism predicts decoherence rates
scaling as G1, while perturbative quantum field theory predicts G2, a difference of ∼ 1035 in
predicted rates for laboratory-scale masses. We apply the Margolus-Levitin quantum speed
limit to establish a fundamental rate scale for gravitational decoherence. For a mass M in
spatial superposition of separation d, we show that the Margolus-Levitin theorem establishes
a characteristic rate ΓML = 2GM2/(πℏd), where the gravitational self-energy EG = GM2/d

sets the fundamental energy scale. The Diósi-Penrose rate ΓDP = GM2/(ℏd) is of the same
order as this scale, with ΓDP/ΓML = π/2 ≈ 1.57, while the perturbative QFT rate lies a
factor of (M/MP )2(ℓP /d) ∼ 10−35 below it for typical laboratory masses. This implies that if
gravitational decoherence occurs at the Diósi-Penrose rate, gravity extracts information from
quantum superpositions at rates characteristic of the fundamental quantum limit. Our results
provide a new perspective on the G1 versus G2 debate: G1 scaling represents operation at
the fundamental information-theoretic scale, while G2 represents perturbative physics far
below this scale. Experimental discrimination between these scalings would reveal whether
gravity operates at its fundamental information-theoretic limit.
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1 Introduction

Gravitational decoherence—the loss of quantum coherence due to gravitational effects on spatial
superpositions of massive objects—presents a sharp theoretical puzzle.

1.1 The G1 versus G2 Puzzle

Two fundamentally different predictions exist for the rate of gravitational decoherence:
The Diósi-Penrose mechanism [1, 2] proposes that a mass M in spatial superposition of

separation d decoheres at a rate

ΓDP = GM2

ℏd
(1)

where G is Newton’s constant. This scales as G1.
Perturbative quantum field theory [3, 4], treating gravitational interactions via graviton

exchange, predicts rates that scale as

ΓQFT ∝ G2 (2)

one power of G smaller than the Diósi-Penrose rate.
For a laboratory-scale mass of M ∼ 10−9 kg (1 µg) and separation d ∼ 10−3 m (1 mm), these

predictions differ by a factor of approximately 1035—perhaps the largest discrepancy between
competing theoretical predictions in physics.

1.2 The Theoretical Gap

Despite decades of work, neither prediction has been rigorously derived from first principles.
The Diósi-Penrose rate emerges from dimensional analysis combined with the gravitational
self-energy EG = GM2/d, but the step from energy scale to decoherence rate remains unproven.
Perturbative QFT calculations are rigorous within their domain but may miss non-perturbative
effects.

This paper takes a different approach: rather than attempting to derive either rate, we ask
what fundamental limits quantum mechanics places on gravitational decoherence rates.

1.3 Information-Theoretic Approach

Quantum mechanics imposes universal speed limits on dynamical evolution. The Margolus-
Levitin theorem [5] states that a quantum system with energy E above its ground state requires
time at least

τ ≥ πℏ
2E (3)

to evolve to an orthogonal state.
We apply this bound to gravitational decoherence by modeling decoherence as information

transfer from the quantum system to the gravitational environment. Our key assumption is that
the gravitational self-energy EG = GM2/d provides the energy scale driving this information
transfer. This assumption is physically motivated but not rigorously derived; our results are
conditional on its validity.
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1.4 Summary of Results

We establish three main results:

Theorem 1.1 (Margolus-Levitin Rate Scale). For a mass M in spatial superposition of separation
d, the Margolus-Levitin theorem establishes a characteristic rate scale:

ΓML = 2EG
πℏ

= 2GM2

πℏd
(4)

This is the maximum rate at which the gravitational environment can evolve to completely
distinguish the two branches.

Theorem 1.2 (Diósi-Penrose at the Fundamental Scale). The Diósi-Penrose rate is of the same
order as the Margolus-Levitin scale:

ΓDP = π

2 × ΓML ≈ 1.57 × ΓML (5)

where ΓML = 2GM2/(πℏd). The factor π/2 reflects the distinction between complete orthogonal-
ization (ML timescale) and 1/e coherence decay (decoherence rate).

Theorem 1.3 (QFT Far Below the Scale). The perturbative QFT rate lies far below the
Margolus-Levitin scale:

ΓQFT
ΓML

∼
(
M

MP

)2 ℓP
d

∼ 10−35 (6)

for laboratory masses (M ∼ 1 µg, d ∼ 1 mm).

These results provide a new perspective on the G1 versus G2 debate: G1 scaling represents
operation at the fundamental information-theoretic scale set by quantum mechanics, while G2

represents perturbative physics far below this scale.

1.5 Outline

Section 2 reviews quantum speed limits, focusing on the Margolus-Levitin bound and its exten-
sions to open systems. Section 3 defines the gravitational self-energy for spatial superpositions.
Section 4 presents the main theorems and proofs. Section 5 discusses the physical interpretation,
including the significance of operating at the fundamental information-theoretic scale. Section 6
addresses implications and limitations. Section 7 concludes.

Series context. This paper provides information-theoretic foundations for gravitational
decoherence, complementing Paper A (mechanism and predictions), Paper B (holographic dark
energy), and Paper C (axiomatic framework). Each paper is self-contained.

2 Quantum Speed Limits

Quantum mechanics imposes fundamental limits on how fast physical processes can occur. These
quantum speed limits (QSLs) have deep connections to the energy-time uncertainty relation and
place universal constraints on dynamical evolution.

5



2.1 The Mandelstam-Tamm Bound

The first rigorous quantum speed limit was derived by Mandelstam and Tamm [6]. For a
quantum system evolving under Hamiltonian H, the time required to evolve from an initial state
|ψ0⟩ to a state with fidelity F = | ⟨ψ0⟩ψτ |2 satisfies

τ ≥ ℏ arccos
√
F

∆E (7)

where ∆E =
√

⟨H2⟩ − ⟨H⟩2 is the energy uncertainty (standard deviation) in the initial state.
For evolution to an orthogonal state (F = 0), this becomes

τMT = πℏ
2∆E (8)

The Mandelstam-Tamm bound is tight: there exist systems that saturate it.

2.2 The Margolus-Levitin Bound

A complementary bound was derived by Margolus and Levitin [5]. For evolution to an orthogonal
state, the minimum time is

τML = πℏ
2E (9)

where E = ⟨H⟩ − E0 is the mean energy above the ground state energy E0.
Unlike the Mandelstam-Tamm bound, which depends on energy fluctuations, the Margolus-

Levitin bound depends on the total available energy.

Remark 2.1. The Margolus-Levitin bound implies a fundamental limit on computation: no
physical system can perform more than 2E/(πℏ) ≈ 6 × 1033 operations per second per joule of
energy [7].

2.3 Unified Quantum Speed Limit

The two bounds are independent and complementary. The tightest constraint comes from taking
the maximum:

τ ≥ max
(
πℏ

2∆E ,
πℏ
2E

)
(10)

For systems where E ≫ ∆E (highly excited states with small relative fluctuations), the
Margolus-Levitin bound dominates. For systems where ∆E ≫ E (which requires negative energy
contributions), the Mandelstam-Tamm bound dominates.

2.4 Extension to Open Systems

The original quantum speed limits were derived for isolated systems undergoing unitary evolution.
Several authors have extended these limits to open systems, which undergo decoherence and
dissipation.

Del Campo, Egusquiza, Plenio, and Huelga [8] derived a quantum speed limit for open
systems:

τ ≥ sin2[L(ρ0, ρτ )]
⟨L̇2⟩

(11)
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where L(ρ0, ρτ ) = arccos
√
F (ρ0, ρτ ) is the Bures angle between initial and final density matrices,

and F is the quantum fidelity.
Deffner and Lutz [9] showed that for Markovian dynamics described by a Lindblad master

equation, the speed limit can be expressed in terms of the generator of the non-unitary dynamics.

2.5 Application to Decoherence

We can view decoherence as the environment acquiring information about the system. Initially,
the system state is unknown to the environment; after decoherence, the environment has
measured the system.

For a system in superposition |ψ⟩ = (|L⟩ + |R⟩)/
√

2 (e.g., a mass localized left or right),
decoherence corresponds to the environment states |EL⟩ and |ER⟩ becoming distinguishable:

| ⟨EL⟩ER|2 → 0 (12)

The time for the environment states to become orthogonal is bounded by quantum speed
limits applied to the environment evolution. The relevant energy is the energy available to drive
this distinguishing process.

2.6 Application to Gravitational Decoherence

For a spatial superposition, the energy driving environment evolution is the gravitational
self-energy difference between the two branches:

EG = GM2

d
(13)

Applying the Margolus-Levitin bound with this energy yields the central result of this paper.

3 Gravitational Self-Energy for Spatial Superpositions

The application of quantum speed limits to gravitational decoherence requires identifying
the relevant energy scale. In this section, we define the gravitational self-energy for spatial
superpositions and justify its role in the Margolus-Levitin bound.

3.1 Penrose’s Gravitational Self-Energy

Consider a mass M in a spatial superposition

|Ψ⟩ = 1√
2

(|L⟩ + |R⟩) (14)

where |L⟩ and |R⟩ represent the mass localized at positions separated by distance d.
Penrose [2] argued that each branch of the superposition is associated with a distinct spacetime

geometry. The “difference” between these geometries can be quantified by the gravitational
self-energy

EG =
∫
d3x

∫
d3x′G[ρL(x) − ρR(x)][ρL(x′) − ρR(x′)]

|x − x′|
(15)

where ρL and ρR are the mass density distributions in the two branches.
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3.2 Point Mass Approximation

For a compact mass M with size r0 ≪ d, the self-energy simplifies to

EG = GM2

d
(16)

This expression represents the gravitational interaction energy between two copies of the mass
separated by distance d. The quantity EG has dimensions of energy and is purely classical in
origin, being independent of both ℏ and c.

3.3 Physical Interpretation

From the Newtonian viewpoint, EG represents the work required to separate two masses M
from distance d to infinity:

EG =
∫ ∞

d

GM2

r2 dr = GM2

d
(17)

In the general relativistic picture, each branch creates a metric perturbation h
(L,R)
µν in

linearized gravity. The difference δhµν = h
(L)
µν − h

(R)
µν carries energy proportional to EG.

From an information-theoretic perspective, the two branches carry different gravitational
information. The energy required to “read” this information—to distinguish the branches
gravitationally—is at least EG.

3.4 Role in the Margolus-Levitin Bound

For the Margolus-Levitin bound τ ≥ πℏ/(2E), we must identify the energy E available to drive
the relevant evolution.

In gravitational decoherence, the “relevant evolution” is the environment—comprising gravi-
tational field modes, distant masses, or cosmological degrees of freedom—acquiring information
about which branch the system occupies. This process is equivalent to the environment states
|EL⟩ and |ER⟩ becoming orthogonal.

We hypothesize that the energy available to drive this orthogonalization is the gravitational self-
energy EG. This identification is the central assumption of our analysis; the main results follow if
it is correct. Three considerations support this hypothesis. First, EG is the only energy scale in
the problem that depends on both M and d, the two parameters characterizing the superposition.
Second, EG characterizes the gravitational “signal” that distinguishes the branches—it quantifies
how different the two gravitational field configurations are. Third, EG represents the maximum
energy extractable from the superposition by gravitational measurements.

A rigorous derivation would require specifying the gravitational environment’s Hilbert space
and Hamiltonian, then computing the energy above the ground state that drives distinguishability.
In the absence of a complete theory of quantum gravity, such a derivation is not available. Our
hypothesis is that EG plays this role.

3.5 Comparison with Other Energy Scales

Several other energy scales appear in the problem, but none is appropriate for the Margolus-
Levitin bound in this context.
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The rest mass energy Erest = Mc2 is enormous but independent of the superposition—both
branches have identical rest mass. The kinetic energy depends on the preparation but is typically
much smaller than EG for mesoscopic masses at rest. The Planck energy EP =

√
ℏc5/G ≈ 109 J

is many orders of magnitude larger than EG for all laboratory masses.
The gravitational self-energy EG is the unique energy scale that depends on the superposition

parameters (M and d), is gravitational in origin (proportional to G), and characterizes the
distinguishability of the branches. This uniqueness motivates—though does not rigorously
derive—its use in the Margolus-Levitin bound for gravitational decoherence.

4 Main Results

We now present and prove the main theorems establishing information-theoretic bounds on
gravitational decoherence rates.

Notation: We use Γ for rates (dimension T−1) throughout. The corresponding timescales
are τ = 1/Γ.

4.1 Setup and Definitions

Consider a mass M prepared in a spatial superposition:

|Ψ0⟩ = 1√
2

(|L⟩ + |R⟩) ⊗ |E0⟩ (18)

where |L⟩ and |R⟩ are spatially localized states separated by distance d, and |E0⟩ is the initial
state of the gravitational environment.

Definition 4.1 (Decoherence). The system undergoes decoherence when the reduced density
matrix evolves from pure to mixed:

ρS(0) = |Ψ0⟩ ⟨Ψ0| → ρS(τ) = 1
2 (|L⟩ ⟨L| + |R⟩ ⟨R|) (19)

The decoherence time τdec is the timescale for the off-diagonal elements to decay: |ρLR(τdec)| ≈
e−1|ρLR(0)|.

Definition 4.2 (Decoherence Rate). The decoherence rate is Γdec = 1/τdec.

Decoherence occurs because the environment states correlated with |L⟩ and |R⟩ become
distinguishable:

|Ψ(τ)⟩ = 1√
2

(|L⟩ ⊗ |EL(τ)⟩ + |R⟩ ⊗ |ER(τ)⟩) (20)

with | ⟨EL(τ)⟩ER(τ)|2 → 0 as τ → τdec.

4.2 Central Assumption

The application of quantum speed limits to gravitational decoherence requires identifying the
relevant energy scale. We make this explicit:
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Assumption 4.3 (Gravitational Energy as Environment Driver). The energy available to drive
the gravitational environment toward distinguishing the two branches of a spatial superposition
is the gravitational self-energy:

Eenv = EG = GM2

d
(21)

where M is the mass and d is the superposition separation.

This assumption is physically motivated but not derived from first principles. The theorems
that follow are conditional on its validity.

4.3 Physical Motivation for Assumption 4.3

Three arguments support identifying EG as the relevant energy:
Energy difference: The gravitational field configurations in the two branches differ by energy

∼ EG. This energy is available to drive environmental degrees of freedom into distinguishable
states.

Holographic considerations: In AdS/CFT, the energy cost of distinguishing geometric
configurations is set by gravitational scales, not perturbative amplitudes.

Classical correspondence: Classically, the gravitational self-energy determines field
dynamics. The assumption extends this to the quantum-classical interface.

These arguments are suggestive, not conclusive. Assumption 4.3 is a hypothesis whose
consequences we explore. Experiment will determine its validity.

4.4 Theorem 1: Margolus-Levitin Rate Scale

Theorem 4.4 (Information-Theoretic Rate Scale). Given Assumption 4.3, the Margolus-Levitin
theorem establishes a characteristic rate scale for gravitational decoherence:

ΓML = 2EG
πℏ

= 2GM2

πℏd
(22)

This is the maximum rate at which the gravitational environment can evolve to completely
distinguish the two branches.

Proof. Decoherence requires the environment states |EL⟩ and |ER⟩ to become distinguishable.
Complete distinguishability corresponds to orthogonality: ⟨EL⟩ER = 0.

The Margolus-Levitin bound states that a quantum system with energy E above its ground
state requires time at least τ ≥ πℏ/(2E) to evolve to an orthogonal state.

By Assumption 4.3, the energy driving this evolution is EG = GM2/d. Applying the
Margolus-Levitin bound:

τ⊥ ≥ πℏ
2EG

= πℏd
2GM2 (23)

The corresponding maximum orthogonalization rate is:

ΓML = 1
τ⊥

= 2EG
πℏ

= 2GM2

πℏd
(24)
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Remark 4.1 (Ground State Definition). The Margolus-Levitin bound uses energy above the ground
state. We define the ground state of the gravitational environment as the vacuum configuration
with no mass present. The energy EG represents the energy added by the superposed mass.
Vacuum fluctuation corrections are suppressed by (ℓP /d)2 ∼ 10−64 for laboratory scales and are
neglected.

Remark 4.2. The rate ΓML depends only on the gravitational self-energy and fundamental
constants. It represents the fastest rate at which the gravitational environment can acquire
complete “which-path” information about the superposition. Actual decoherence rates (typically
defined by 1/e decay of coherence) may differ from ΓML by order-unity factors depending on the
specific dynamics, but ΓML sets the fundamental scale.

4.5 Theorem 2: Diósi-Penrose at the Fundamental Scale

Theorem 4.5 (Diósi-Penrose Rate at Order ΓML). The Diósi-Penrose decoherence rate

ΓDP = GM2

ℏd
= EG

ℏ
(25)

is of the same order as the Margolus-Levitin rate scale:

ΓDP = π

2 × ΓML ≈ 1.57 × ΓML (26)

Proof. Direct calculation:

ΓDP
ΓML

= GM2/(ℏd)
2GM2/(πℏd) (27)

= π

2 (28)

≈ 1.57 (29)

Remark 4.3. The ratio π/2 ≈ 1.57 reflects the distinction between two related but different
timescales. The Margolus-Levitin bound gives the minimum time τ⊥ = πℏ/(2E) for evolution to
complete orthogonality. Decoherence rates are conventionally defined by 1/e decay of coherence,
which occurs at a different time. For two-level dynamics with overlap | ⟨ψ(t)⟩ψ(0)| = | cos(Et/ℏ)|,
the orthogonality time is t⊥ = πℏ/(2E), while the 1/e decay time is t1/e = ℏ arccos(1/e)/E ≈
1.19ℏ/E. The Diósi-Penrose timescale τDP = ℏ/EG lies between these values. The key physical
content is that ΓDP and ΓML differ by only a factor of order unity, not by orders of magnitude
as with perturbative QFT.

4.6 Theorem 3: Perturbative QFT Far Below the Fundamental Scale

Theorem 4.6 (QFT Rate Far Below ΓML). Perturbative QFT calculations give decoherence
rates scaling as G2. The ratio to the Margolus-Levitin scale is:

ΓQFT
ΓML

∼
(
M

MP

)2 ℓP
d

∼ 10−35 for M ∼ 1 µg, d ∼ 1 mm (30)
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Prediction Scaling Ratio to ΓML

Margolus-Levitin scale G1 1 (by definition)

Diósi-Penrose G1 π

2 ≈ 1.57

Perturbative QFT G2 ∼
(
M

MP

)2 ℓP
d

∼ 10−35

Table 1. Gravitational decoherence rate scalings compared to the Margolus-Levitin scale ΓML = 2EG/(πℏ).
Both ΓML and the Diósi-Penrose rate scale as G1, differing by only an order-unity factor (π/2). Pertur-
bative QFT scales as G2, lying thirty-five orders of magnitude below for laboratory masses.

Proof. Perturbative QFT calculations [3, 4] give rates ΓQFT ∝ G2, one power of G below
ΓML ∝ G1.

To form the dimensionless ratio ΓQFT/ΓML from the quantities G, M , d, ℏ, c, we need one
power of G (since ΓQFT/ΓML ∝ G1). The unique dimensionless combination linear in G is:

GM

c2d
= M2

M2
P

· ℓP
d

=
(
M

MP

)2 ℓP
d

(31)

where we used G = ℓ2P c
3/ℏ = c2ℓP /MP .

For M = 10−9 kg and d = 10−3 m:(
10−9

2 × 10−8

)2

× 1.6 × 10−35

10−3 ≈ 2.5 × 10−3 × 1.6 × 10−32 ≈ 4 × 10−35 (32)

Remark 4.4. The perturbative QFT rate lies a factor of ∼ 1035 below the Margolus-Levitin scale.
Perturbative physics operates far from the fundamental information-theoretic limit—achieving
G1 scaling requires non-perturbative effects.

4.7 Summary of Results

Table 1 summarizes the three rate scales and their relationships. The hierarchy

ΓQFT ≪ ΓML ∼ ΓDP (33)

reveals a stark separation: the Diósi-Penrose rate is of the same order as the Margolus-Levitin
scale (differing by a factor of π/2), while perturbative QFT lies approximately 1035 times below.
This enormous gap provides a clear experimental discriminant between the two scenarios.

Remark 4.5. Once EG is identified as the relevant energy in the Margolus-Levitin bound, the
relation ΓDP ∼ ΓML follows immediately from dimensional analysis since both are proportional to
EG/ℏ. The non-trivial content of our analysis is twofold: (i) arguing that EG is the appropriate
energy, and (ii) showing that perturbative QFT lies approximately 1035 times below this scale.
The G1 versus G2 dichotomy, not the π/2 coefficient, is the physically significant result.

12



5 Physical Interpretation

This section explores the physical meaning of the mathematical results in Section 4: what it
means for a physical process to operate at the fundamental information-theoretic scale.

5.1 The Significance of the Margolus-Levitin Scale

Quantum speed limits establish fundamental scales that characterize the maximum rate of
dynamical evolution. When a physical process operates at or near this scale, it indicates that
the system is extracting information or performing work at rates approaching the fundamental
limit quantum mechanics allows.

Two notable examples illustrate this phenomenon. Black holes scramble quantum information
at the maximum rate allowed by the chaos bound λL ≤ 2πkBT/ℏ, as shown by Maldacena,
Shenker, and Stanford [10]. This saturation is intimately connected to the holographic nature of
black hole physics. Similarly, optimal quantum algorithms approach the Margolus-Levitin limit
of approximately 6 × 1033 operations per second per joule [7].

The Diósi-Penrose rate being of order the Margolus-Levitin scale, with ΓDP/ΓML = π/2 ≈
1.57, suggests that gravitational decoherence—if it occurs at this rate—operates at the funda-
mental information-theoretic scale of quantum dynamics.

5.2 Why Might Gravity Operate at the Fundamental Scale?

Several distinctive features of gravity may explain why gravitational decoherence could operate
at the information-theoretic scale.

Universal coupling. Gravity couples to all forms of energy-momentum through the stress-
energy tensor. Unlike electromagnetic or nuclear forces, there is no gravitational “charge”—
every quantum system gravitates. This universality means gravitational information about a
superposition is maximally available to the environment.

No shielding. Gravitational fields cannot be screened or shielded. While electric fields can
be blocked by conductors and nuclear forces are short-ranged, gravitational effects extend to
infinity without attenuation. The gravitational “signal” of a spatial superposition reaches all
environmental degrees of freedom simultaneously.

Holographic properties. In theories with holographic duality, gravitational dynamics at
the boundary encodes bulk physics in a maximally efficient way. If some version of holography
applies to flat spacetime, gravitational information transfer may be inherently optimal.

Non-perturbative nature. The G1 scaling of Diósi-Penrose cannot arise from perturbative
graviton exchange, which gives G2. We use “non-perturbative” here as a descriptive label—
meaning “not arising from perturbation theory”—rather than as an explanation.

A candidate mechanism: flat spectral density. A potential explanation for saturation
emerges from Fourier analysis of the gravitational constraint. The Poisson equation ∇2Φ = 4πGρ
gives, in Fourier space, Φ̃k = −4πGρ̃k/k

2. For a spatial superposition of point masses at positions
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±d/2, the source difference transforms as ∆ρ̃k = 2iM sin(kd/2) ≈ iMkd for long wavelengths
(k ≪ 1/d). The gravitational field energy per unit k then scales as

E(k) ∝ k2|∆Φ̃k|2 ∝ k2 × |Mkd|2

k4 = (Md)2 = constant. (34)

This flat spectral density for k < 1/d is unique to the 1/r potential. The 1/k2 of the gravitational
Green’s function exactly compensates the k2 growth of the source transform, yielding scale-
independent energy distribution. Other potentials—Yukawa (1/k2+µ2), contact (constant)—lack
this cancellation.

The flat spectrum implies that all long-wavelength gravitational modes carry equal energy
from the superposition. When these modes serve as an environment, information about the
superposition flows to all of them simultaneously with no single mode limiting the rate. This
is precisely the condition for approaching quantum speed limits: no information bottleneck.
A complete derivation of saturation would require specifying the quantum dynamics of these
modes, but the flat spectrum provides a concrete physical reason why gravity might achieve
maximum information transfer efficiency.

5.3 The G1 versus G2 Dichotomy

Our results cast the long-standing debate between G1 and G2 scaling in a new light. The G1

scaling of Diósi-Penrose represents operation at the fundamental information-theoretic scale,
extracting position information from superpositions at rates of order the Margolus-Levitin limit.
The G2 scaling of perturbative QFT represents physics operating far below this scale, suppressed
by factors of (M/MP)2 ∼ 10−35 for laboratory masses.

This distinction is not merely quantitative but qualitative. The central question becomes:
does gravitational decoherence involve physics that operates at the fundamental information-
theoretic scale, or is it simply another perturbative interaction far from any fundamental
limit?

5.4 Comparison with Other Systems at Fundamental Limits

Table 2 compares the relationship to fundamental bounds across different physical systems. A
consistent pattern emerges: systems involving gravity and holography tend to operate at their
fundamental limits, while perturbative processes do not. Black hole scrambling saturates the
chaos bound through holographic dynamics. The Bekenstein entropy bound is saturated by
black holes, again through holographic physics. Diósi-Penrose decoherence operates at order
the Margolus-Levitin scale, with the flat spectral density providing a candidate mechanism.
Perturbative graviton exchange lies far below this scale.

A crucial difference should be noted: black hole scrambling and Bekenstein entropy saturation
have rigorous theoretical explanations rooted in holographic duality. For gravitational decoherence,
the flat spectral density argument provides a candidate mechanism but not a complete derivation—
we have identified a plausible physical reason for saturation, pending a full quantum treatment
of the gravitational environment. The analogy to black holes is suggestive and may reflect deep
connections through holography.
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System Bound/Scale At limit? Mechanism

Black hole scrambling Chaos bound Yes Holography
Bekenstein entropy Area bound Yes Holography
Diósi-Penrose Margolus-Levitin O(1) (π/2) Flat spectrum (candidate)
QFT graviton exchange Margolus-Levitin No (10−35) Perturbative

Table 2. Comparison across physical systems. Systems involving gravity and holography consistently
operate at their fundamental limits, while perturbative processes do not.

5.5 What Our Analysis Does Not Establish

We emphasize three limitations of our results. First, we do not prove that the Diósi-Penrose
rate is correct—only that it is of the same order as the fundamental information-theoretic scale.
Second, we do not derive the specific coefficient in the decoherence rate. The relationship between
the orthogonalization timescale (τ⊥ = πℏ/2EG) and the decoherence timescale (τDP = ℏ/EG)
involves dynamics-dependent factors. Third, while the flat spectral density provides a candidate
mechanism for G1 scaling, a complete derivation requires specifying the quantum Hilbert space
of gravitational modes—which lies beyond current theory.

These questions require either a complete theory of quantum gravity or experimental resolu-
tion.

5.6 Experimental Implications

The Margolus-Levitin scale provides a clear experimental target. If experiments measure
decoherence rates of order ΓML, this would support non-perturbative gravitational decoherence
mechanisms such as Diósi-Penrose. Rates measured far below ΓML would support perturbative
QFT predictions.

Current experiments have not yet reached the sensitivity required to discriminate between
these scenarios. However, progress in optomechanics and matter-wave interferometry continues
rapidly, with microgram-scale masses in superposition states becoming increasingly accessible.
The coming decade may bring definitive experimental tests.

6 Discussion

6.1 Assumptions and Limitations

Our derivation rests on several assumptions.

Applicability of Margolus-Levitin to open systems. The original Margolus-Levitin bound
was derived for isolated systems undergoing unitary evolution. We apply it to the environment’s
evolution, treating the system-environment composite as isolated. This approach is justified when
the total system (mass plus gravitational environment) is closed, but may require modification
if additional external influences are present. Del Campo et al. [8] and Deffner and Lutz [9]
have extended quantum speed limits to open systems, providing a rigorous foundation for our
application.

15



Identification of the relevant energy. We identify the gravitational self-energy EG =
GM2/d as the energy driving decoherence. This identification is physically motivated but not
derived from first principles. Alternative energy scales—involving the cosmological horizon,
vacuum energy, or other gravitational degrees of freedom—might be relevant in a complete
theory.

Nature of the gravitational environment. Our analysis treats the “gravitational environ-
ment” as a quantum system that becomes entangled with the mass in superposition. However,
we do not specify what this environment consists of—gravitational field modes, distant masses,
cosmological degrees of freedom, or something else entirely. In the absence of quantum gravity,
the Hilbert space structure of such an environment is not well-defined. Our results should be
understood as conditional: if gravity can be modeled as an environment acquiring information
about the superposition, then the Margolus-Levitin scale applies.

Point mass approximation. We treat the mass as point-like with EG = GM2/d. For
extended objects, the self-energy involves an integral over the mass distribution as shown in
equation (15). Our results remain valid with EG interpreted as this integral.

Non-relativistic limit. We work in the non-relativistic limit where v ≪ c and EG ≪ Mc2.
Relativistic corrections may modify both the bound and the Diósi-Penrose rate when the
superposition separation approaches the Compton wavelength or when gravitational fields
become strong.

6.2 Relation to Prior Work

Diósi [1] and Penrose [2] proposed the rate Γ = EG/ℏ based on different physical arguments.
Diósi derived a master equation from stochastic modifications to the Schrödinger equation, while
Penrose argued from the requirement of general covariance applied to superposed spacetime
geometries. Our work reveals that this rate has deeper significance: it is of the same order as
the fundamental Margolus-Levitin scale.

Anastopoulos and Hu [3] derived a master equation for gravitational decoherence from
quantum field theory, finding rates scaling as G2. Blencowe [4] obtained similar results using
effective field theory methods. Our analysis is consistent with their findings: perturbative QFT
lies far below the information-theoretic scale, exactly as expected for a process that does not
operate at fundamental limits.

Deffner and Campbell [11] provided a comprehensive review of quantum speed limits,
including extensions to open systems and various applications. Our application to gravitational
decoherence appears to be novel, connecting two previously separate research areas.

6.3 The Order-Unity Coefficient

The Diósi-Penrose rate ΓDP = EG/ℏ differs from the Margolus-Levitin scale ΓML = 2EG/(πℏ)
by a factor of π/2 ≈ 1.57. This does not constitute a violation of the Margolus-Levitin bound,
because the two quantities measure different things.

The Margolus-Levitin theorem gives the minimum time τ⊥ = πℏ/(2E) for evolution to an
orthogonal state—complete distinguishability. Decoherence rates, however, are conventionally
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defined by the 1/e decay time of coherence, following |ρLR(t)| = e−Γt|ρLR(0)|, which occurs before
orthogonality. For two-level dynamics where the overlap evolves as | ⟨ψ(t)⟩ψ(0)| = | cos(Et/ℏ)|,
the orthogonality time is τ⊥ = πℏ/(2E), while the 1/e decay time is τ1/e = ℏ arccos(1/e)/E ≈
1.19ℏ/E. The Diósi-Penrose timescale τDP = ℏ/EG lies between these values, consistent with
1/e decay occurring before full orthogonalization.

The key physical content is that all three timescales—orthogonalization, 1/e decay, and
Diósi-Penrose—scale identically with G, M , and d, differing only by O(1) coefficients. This
stands in stark contrast to perturbative QFT, which differs by thirty-five orders of magnitude.

6.4 Implications for Quantum Gravity

If gravitational decoherence operates at the Margolus-Levitin scale, several implications follow
for quantum gravity.

First, non-perturbative physics is essential. Perturbative graviton exchange cannot achieve
G1 scaling; any mechanism operating at this scale must be non-perturbative. This suggests that
gravitational decoherence, if it occurs at the Diósi-Penrose rate, probes aspects of gravity that
lie beyond perturbation theory.

Second, gravity may function as a quantum channel operating at near-maximum capacity.
Operating at the information-theoretic scale suggests viewing gravity not merely as a force but
as an efficient channel for information transfer between quantum systems and their gravitational
environment.

Third, the pattern of gravitational systems operating at fundamental limits—black hole
scrambling, Bekenstein entropy, and potentially decoherence—suggests deep connections to
holographic principles. Whether a version of holography underlies gravitational decoherence
remains an open question.

6.5 Open Questions

Can the order-unity coefficient relating ΓDP to ΓML be derived from first principles? What
physical mechanism is responsible for G1 scaling? How does the Margolus-Levitin scale modify in
curved spacetime or in the presence of horizons? Is there a connection to the holographic principle?
Can analogous information-theoretic analyses be applied to other decoherence mechanisms?

7 Conclusions

We establish information-theoretic rate scales for gravitational decoherence using the Margolus-
Levitin quantum speed limit. Our main results are:

1. Margolus-Levitin scale. For a mass M in spatial superposition of separation d, the
Margolus-Levitin theorem establishes a characteristic rate scale:

ΓML = 2GM2

πℏd
(35)

This scale follows from fundamental quantum mechanics, conditional on the assumption that the
gravitational self-energy EG = GM2/d is the energy available to drive the environment toward
distinguishing the superposition branches. This assumption is physically motivated but not
rigorously derived.
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2. Diósi-Penrose at the fundamental scale. The Diósi-Penrose rate ΓDP = GM2/(ℏd)
is of the same order as the Margolus-Levitin scale, with ΓDP/ΓML = π/2 ≈ 1.57. This suggests
that if gravitational decoherence occurs at the Diósi-Penrose rate, gravity extracts information
from superpositions at rates characteristic of the fundamental quantum limit.

3. Perturbative QFT far below the scale. The perturbative QFT rate from graviton
exchange lies a factor of (M/MP)2(ℓP/d) ∼ 10−35 below the Margolus-Levitin scale for laboratory
masses. Perturbative physics operates far from fundamental information-theoretic limits.

These results provide a new perspective on the long-standing G1 versus G2 debate in gravi-
tational decoherence. The G1 scaling of Diósi-Penrose represents operation at the fundamental
information-theoretic scale; the G2 scaling of perturbative QFT represents physics far below
this scale. Experimental discrimination between these scalings would reveal whether gravity
operates at its fundamental information-theoretic limit.

Our analysis does not prove that the Diósi-Penrose rate is correct. It establishes that this
rate is of the same order as a fundamental quantum scale, conditional on our central assumption.
The ultimate arbiter is experiment. Experimental confirmation of G1 scaling would validate both
the Diósi-Penrose mechanism and our assumption that EG is the relevant energy scale. Current
technology has not yet reached the regime where G1 and G2 predictions can be distinguished,
but continued progress in optomechanics and matter-wave interferometry may enable such tests
within the coming decades.

If gravitational decoherence is experimentally confirmed to occur at rates of order ΓML, it
would join black hole scrambling and the Bekenstein bound as cases where gravity operates at
fundamental information-theoretic limits. This raises the question of whether such saturation is
generic to gravitational physics.
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Appendices

A Derivation of the Margolus-Levitin Bound

For completeness, we provide a derivation of the Margolus-Levitin bound following the original
argument [5].

A.1 Setup

Consider a quantum system with Hamiltonian H having ground state energy E0. Let |ψ0⟩ be
the initial state and |ψτ ⟩ = e−iHτ/ℏ |ψ0⟩ the state at time τ .

We seek the minimum time for the system to evolve to an orthogonal state, ⟨ψ0⟩ψτ = 0.

A.2 Energy Representation

Expand the initial state in the energy eigenbasis:

|ψ0⟩ =
∑

n

cn |En⟩ (36)

where H |En⟩ = En |En⟩ and ∑n |cn|2 = 1.
The overlap at time τ is:

⟨ψ0⟩ψτ =
∑

n

|cn|2e−iEnτ/ℏ (37)

A.3 Bound on the Real Part

The real part of the overlap is:

Re ⟨ψ0⟩ψτ =
∑

n

|cn|2 cos(Enτ/ℏ) (38)

For orthogonality, we need ⟨ψ0⟩ψτ = 0, which requires both real and imaginary parts to
vanish.

Using the inequality cos θ ≥ 1 − (2/π)|θ| for |θ| ≤ π:

Re ⟨ψ0⟩ψτ ≥
∑

n

|cn|2
(

1 − 2
π

Enτ

ℏ

)
(39)

Shifting energies by the ground state energy E0:

Re ⟨ψ0⟩ψτ ≥ 1 − 2τ
πℏ
∑

n

|cn|2(En − E0) = 1 − 2Eτ
πℏ

(40)

where E = ⟨H⟩ − E0 is the mean energy above the ground state.

A.4 The Bound

For orthogonality, Re ⟨ψ0⟩ψτ = 0, so:

0 ≥ 1 − 2Eτ
πℏ

(41)
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Rearranging:

τ ≥ πℏ
2E (42)

This is the Margolus-Levitin bound.

A.5 Tightness

The bound is asymptotically tight. For a system with energy spectrum En = E0 +n∆E (equally
spaced levels) and initial state |ψ0⟩ = (|E0⟩ + |EN ⟩)/

√
2:

⟨ψ0⟩ψτ = 1
2
(
1 + e−iN∆Eτ/ℏ

)
(43)

Orthogonality requires N∆Eτ/ℏ = π, giving τ = πℏ/(N∆E). For this state, E = N∆E/2,
so τ = πℏ/(2E)—exactly saturating the bound.

B Extension to Open Systems

The Margolus-Levitin bound was originally derived for isolated systems undergoing unitary
evolution. Here we discuss its extension to open systems, which is relevant for decoherence.

B.1 The Challenge

In an open system, the density matrix ρ evolves non-unitarily:

dρ

dt
= − i

ℏ
[H, ρ] + L[ρ] (44)

where L is a Lindblad superoperator describing dissipation and decoherence.
The concepts of “orthogonal states” and “energy above ground state” require reinterpretation.

B.2 Geometric Approach

Del Campo et al. [8] and Deffner and Lutz [9] extended quantum speed limits to open systems
using geometric methods.

The key quantity is the Bures angle:

L(ρ0, ρτ ) = arccos
√
F (ρ0, ρτ ) (45)

where F (ρ, σ) =
(
Tr
√√

ρσ
√
ρ
)2

is the quantum fidelity.
The quantum speed limit becomes:

τ ≥ L(ρ0, ρτ )
⟨||ρ̇||⟩

(46)

where the denominator is a time-averaged norm of the rate of change.
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B.3 Application to Decoherence

For decoherence of a superposition, we can take a simpler approach: treat the total system (matter
+ environment) as isolated, with the matter system’s decoherence arising from entanglement
with the environment.

In this picture:

• The total system evolves unitarily

• The environment states |EL⟩ and |ER⟩ evolve toward orthogonality

• The Margolus-Levitin bound applies to this environment evolution

The energy driving the environment toward distinguishing the branches is the gravitational
self-energy EG. This justifies our application of the bound in the main text.

B.4 Validity Conditions

The application is valid when:

1. The matter-environment system is approximately isolated (no external influences)

2. The gravitational self-energy EG is the dominant energy scale for branch distinguishability

3. The environment starts in a state that does not initially distinguish the branches

These conditions are satisfied for mesoscopic masses in laboratory vacuum, far from other
massive objects.

C Perturbative QFT Decoherence Rate

This appendix summarizes the perturbative QFT calculation of gravitational decoherence due
to graviton exchange, following Anastopoulos and Hu [3] and Blencowe [4].

C.1 Setup

Consider a mass M in spatial superposition interacting with the gravitational field, treated as a
quantum field of gravitons hµν .

The interaction Hamiltonian in linearized gravity is:

Hint =
∫
d3xhµν(x)Tµν(x) (47)

where Tµν is the stress-energy tensor of the mass.

C.2 Master Equation

Tracing over the graviton field in a thermal or vacuum state yields a master equation for the
mass density matrix:

dρ

dt
= − i

ℏ
[HS , ρ] − 1

ℏ2

∫ ∞

0
dτ TrE [Hint, [Hint(−τ), ρ⊗ ρE ]] (48)
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C.3 Decoherence Rate

For a superposition of localized states |L⟩ and |R⟩ separated by d, the off-diagonal elements
decay as:

ρLR(t) = ρLR(0)e−ΓQFTt (49)

The perturbative calculation gives rates scaling as G2 [4]:

ΓQFT ∼ G2 × f(M,d, ℏ, c) (50)

where f is a function of mass, separation, and fundamental constants whose exact form depends
on the mass distribution, temperature, cutoff scheme, and other details. The scaling with
G2—one power of G below the Diósi-Penrose rate—is the robust result.

C.4 Physical Interpretation

The G2 scaling arises because:

1. One factor of G comes from the graviton emission amplitude

2. One factor of G comes from the graviton absorption/detection amplitude

3. The decoherence rate is proportional to the square of the amplitude (a probability)

This is the standard perturbative result for any interaction: rates scale as the square of the
coupling constant.

C.5 Comparison with Diósi-Penrose

Since the perturbative rate scales as G2 while the Diósi-Penrose rate scales as G1, the ratio
involves one additional power of G. In terms of Planck units, this contributes a factor of
(M/MP)2. Including geometric factors:

ΓQFT
ΓML

∼
(
M

MP

)2 ℓP
d

(51)

For a mass M = 1 µg = 10−9 kg and d = 1 mm = 10−3 m:

ΓQFT
ΓML

∼ (5 × 10−2)2 × (1.6 × 10−32) ∼ 10−35 (52)

Since ΓDP/ΓML = π/2, the perturbative rate is approximately 1035 times smaller than the
Diósi-Penrose rate.

C.6 Why Perturbative Physics Operates Far Below the Scale

The information-theoretic bound scales as G1:

ΓML = 2EG
πℏ

= 2GM2

πℏd
∝ G1 (53)
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Perturbative QFT rates scale as G2—the square of the coupling constant. This is one power
of G below the G1 scale. Since G ∼ 1/M2

P in natural units, the suppression factor is of order
(M/MP)2 ≪ 1 for any mass below the Planck scale.

To operate at the fundamental scale requires non-perturbative physics where the rate scales
as G1, not G2.
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